已知数列{an}满足a1=111,an+1=an1-2an(n∈N*).(1)求证:数列{1an}是等差数列.(2)令bn=|1an|,求{bn}的前n项和Sn.-数学

题目简介

已知数列{an}满足a1=111,an+1=an1-2an(n∈N*).(1)求证:数列{1an}是等差数列.(2)令bn=|1an|,求{bn}的前n项和Sn.-数学

题目详情

已知数列{an}满足a1=
1
11
an+1=
an
1-2an
(n∈N*).
(1)求证:数列{
1
an
}是等差数列.
(2)令bn=|
1
an
|,求{bn}的前n项和Sn
题型:解答题难度:中档来源:不详

答案

(1)证明:∵an≠0,an+1=
an
1-2an

class="stub"1
an+1
=
1-2an
an
=class="stub"1
an
-2

class="stub"1
an+1
-class="stub"1
an
=-2,class="stub"1
a1
=11
∴数列{class="stub"1
an
}是以11为首项,以-2为公差的等差数列等差数列.
(2)由(1)可得class="stub"1
an
=11+(n-1)×(-2)
=-2n+13
bn=|class="stub"1
an
|
=|13-2n|=
13-2n,n≤6
2n-13,n>6

设数列列{class="stub"1
an
}的前项和为Tn,则由等差数列的求和公式可得,Tn=class="stub"11+13-2n
2
×n
=12n-n2
若n≤6时,Sn=Tn=12n-n2
若n>7时,Sn=T6+[-(Tn-T6)]=2T6-Tn=n2-12n+72
Sn=
12n-n2,n≤6
n2-12n+72,n≥7

更多内容推荐