数列{an}各项均为正数,其前n项和为Sn,且满足2anSn-a2n=2.(Ⅰ)求证数列{S2n}为等差数列,并求数列{an}的通项公式;(Ⅱ)设bn=24S4n-1,求数列{bn}的前n项和Tn,并

题目简介

数列{an}各项均为正数,其前n项和为Sn,且满足2anSn-a2n=2.(Ⅰ)求证数列{S2n}为等差数列,并求数列{an}的通项公式;(Ⅱ)设bn=24S4n-1,求数列{bn}的前n项和Tn,并

题目详情

数列{an}各项均为正数,其前n项和为Sn,且满足2anSn-
a2n
=2

(Ⅰ)求证数列{
S2n
}
为等差数列,并求数列{an}的通项公式;
(Ⅱ)设bn=
2
4
S4n
-1
,求数列{bn}的前n项和Tn,并求使Tn
1
6
(m2-3m)
对所有的n∈N*都成立的最大正整数m的值.
题型:解答题难度:中档来源:不详

答案

(Ⅰ)∵2anSn-
a2n
=1

当n≥2时,2(Sn-Sn-1)Sn-(Sn-Sn-1)2=1
整理得,
S2n
-
S2n-1
=1
(n≥2),(2分)
S21
=1
,(3分)
∴数列{
S2n
}
为首项和公差都是1的等差数列.(4分)
S2n
=n
,又Sn>0,∴Sn=
n
(5分)
∴n≥2时,an=Sn-Sn-1=
n
-
n-1

又a1=S1=1适合此式              (6分)
∴数列{an}的通项公式为an=
n
-
n-1
(7分)
(Ⅱ)∵bn=class="stub"2
4
S4n
-1
=class="stub"2
(2n-1)(2n+1)
=class="stub"1
2n-1
-class="stub"1
2n+1
(8分)
Tn=class="stub"1
1×3
+class="stub"1
3×5
+…+class="stub"1
(2n-1)(2n+1)

=1-class="stub"1
3
+class="stub"1
3
-class="stub"1
5
+…+class="stub"1
2n-1
-class="stub"1
2n+1

=1-class="stub"1
2n+1
=class="stub"2n
2n+1
(10分)
Tn≥class="stub"2
3
,依题意有class="stub"2
3
>class="stub"1
6
(m2-3m)
,解得-1<m<4,
故所求最大正整数m的值为3   (12分)

更多内容推荐