已知数列{an}满足a1=25,且对任意n∈N*,都有anan+1=4an+2an+1+2.(1)求证:数列{1an}为等差数列,并求{an}的通项公式;(2)令bn=an•an+1,Tn=b1+b2

题目简介

已知数列{an}满足a1=25,且对任意n∈N*,都有anan+1=4an+2an+1+2.(1)求证:数列{1an}为等差数列,并求{an}的通项公式;(2)令bn=an•an+1,Tn=b1+b2

题目详情

已知数列{an}满足a 1=
2
5
,且对任意n∈N*,都有
an
an+1
=
4an+2
an+1+2

(1)求证:数列{
1
an
}为等差数列,并求{an}的通项公式;
(2)令bn=an•an+1,Tn=b1+b2+b3+…+bn,求证:Tn
4
15
题型:解答题难度:中档来源:不详

答案

证明:(1)∵
an
an+1
=
4an+2
an+1+2

∴2an-2an+1=3anan+1
两边同时除以anan+1可得,class="stub"1
an+1
-class="stub"1
an
=class="stub"3
2

∴数列列{class="stub"1
an
}是以class="stub"1
a1
=class="stub"5
2
为首项,以class="stub"3
2
为公差的等差数列,
class="stub"1
an
=class="stub"5
2
+class="stub"3
2
(n-1)
=class="stub"3n+2
2

∴an=class="stub"2
3n+2

(2)bn=anan+1=class="stub"2
3n+2
•class="stub"2
3n+5
=class="stub"4
3
(class="stub"1
3n+2
-class="stub"1
3n+5
)

Tn=b1+b2+b3+…+bn=class="stub"4
3
(class="stub"1
5
-class="stub"1
3n+5
)<class="stub"4
15

更多内容推荐