设{an}与{bn}是两个等差数列,且a1+a2…+anb1+b2…+bn=3n+14n+3对任意自然数n∈N+都成立,那么anbn=______.-数学

题目简介

设{an}与{bn}是两个等差数列,且a1+a2…+anb1+b2…+bn=3n+14n+3对任意自然数n∈N+都成立,那么anbn=______.-数学

题目详情

设{an}与{bn}是两个等差数列,且
a1+a2…+an
b1+b2…+bn
=
3n+1
4n+3
对任意自然数n∈N+都成立,
     那么
an
bn
=

______.
题型:填空题难度:中档来源:不详

答案

∵a1+a2+…+an=
n(a1+an
2
,b1+b2+…+bn=
n(b1+bn)
2

且两数列{an}和{bn}都为等差数列,
a1+a2+…+an
b1+b2+…+bn
=
n(a1+an
2
n(b1+bn
2
=
a1+an
b1+bn
=
2aclass="stub"n+1
2
2bclass="stub"n+1
2
=
aclass="stub"n+1
2
bclass="stub"n+1
2

a1+a2+…+an
b1+b2+…+bn
=class="stub"3n+1
4n+3

aclass="stub"n+1
2
bclass="stub"n+1
2
=class="stub"3n+1
4n+3

class="stub"n+1
2
=t,则有n=2t-1,
aclass="stub"n+1
2
bclass="stub"n+1
2
=
at
bt
=
3(2t-1)+1
4(2t-1)+3
=class="stub"6t-2
8t-1

an
bn
=class="stub"6n-2
8n-1

故答案为:class="stub"6n-2
8n-1

更多内容推荐