数列{an}满足递推式an=3an-1+3n-1(n≥2),其中a4=365,(Ⅰ)求a1,a2,a3;(Ⅱ)若存在一个实数λ,使得{an+λ3n}为等差数列,求λ值;(Ⅲ)求数列{an}的前n项之和

题目简介

数列{an}满足递推式an=3an-1+3n-1(n≥2),其中a4=365,(Ⅰ)求a1,a2,a3;(Ⅱ)若存在一个实数λ,使得{an+λ3n}为等差数列,求λ值;(Ⅲ)求数列{an}的前n项之和

题目详情

数列{an}满足递推式an=3an-1+3n-1(n≥2),其中a4=365,
(Ⅰ)求a1,a2,a3;  
(Ⅱ)若存在一个实数λ,使得{
an
3n
}
为等差数列,求λ值;
(Ⅲ)求数列{an}的前n项之和.
题型:解答题难度:中档来源:烟台三模

答案

(Ⅰ)由an=3an-1+3n-1,及a4=365知a4=3a3+34-1=365,则a3=95
同理求得a2=23,a1=5
(Ⅱ)∵{
an
3n
}为一个等差数列,于是设
an
3n
=xn+y

∴an=(xn+y)•3n-λ,又由a1=5,a2=23,a3=95
5=a1=(x+y)•3-λ
23=a2=(2x+y)•9-λ
95=a3=(3x+y)•27-λ
 &求得λ=-class="stub"1
2
,x=1,y=class="stub"1
2

an=(n+class="stub"1
2
)•3n+class="stub"1
2
,而an=(n+class="stub"1
2
)•3n+class="stub"1
2
满足递推式

因此λ=-class="stub"1
2

(Ⅲ)∵an=(n+class="stub"1
2
)•3n+class="stub"1
2
先求bn=(n+class="stub"1
2
)•3n的前n项和

记Tn=(1+class="stub"1
2
)•3n+(2+class="stub"1
2
)•32+…+(n+class="stub"1
2
)•3n

则3Tn=(1+class="stub"1
2
)•32+(2+class="stub"1
2
)•33+…+(n+class="stub"1
2
)•3n+1

由上两式相减
Tn-3Tn=(1+class="stub"1
2
)3+32+33+…+3n-(n+class="stub"1
2
)•3n+1

-2Tn=class="stub"9
2
+
32-3n+1
1-3
-(n+class="stub"1
2
)•3n+1=class="stub"9
2
+class="stub"1
2
(3n+1-9)-(n+class="stub"1
2
)•3n+1

=-n•3n+1
Tn=class="stub"1
2
n•3n+1

因此{an}•前n项和为Tn+class="stub"n
2
=class="stub"n
2
3n+1+class="stub"n
2
=class="stub"n
2
(3n+1+1)

更多内容推荐