在等比数列{an}中,已知a3=32,S3=92.(1)求{an}的通项公式;(2)求和Sn=a1+2a2+…+nan.-高二数学

题目简介

在等比数列{an}中,已知a3=32,S3=92.(1)求{an}的通项公式;(2)求和Sn=a1+2a2+…+nan.-高二数学

题目详情

在等比数列{an}中,已知a3=
3
2
,S3=
9
2

(1)求{an}的通项公式;
(2)求和Sn=a1+2a2+…+nan
题型:解答题难度:中档来源:不详

答案

(1)由条件得:a1q2=class="stub"3
2
,(1分)
a1+a1q+a1q2=class="stub"9
2
,(2分)
class="stub"1+q
q2
=2(3分)
∴q=1或q=-class="stub"1
2
(4分)
当q=1时,a1=class="stub"3
2
,an=class="stub"3
2
(5分)
当q=-class="stub"1
2
时,a1=6,an=6(-class="stub"1
2
)
n-1
(6分)
所以当q=1时,an=class="stub"3
2
;当q=-class="stub"1
2
时,an=6(-class="stub"1
2
)
n-1
.(7分)
(2)当q=1时,Sn=class="stub"3
2
(1+2+…+n)=
3n(n+1)
4
;(9分)
当q=-class="stub"1
2
时,Sn=6[(-class="stub"1
2
)
0
+2×(-class="stub"1
2
)
1
+3×(-class="stub"1
2
)
2
+…+n(-class="stub"1
2
)
n-1
](10分)
∴-class="stub"1
2
Sn=6[(-class="stub"1
2
)
1
+2×(-class="stub"1
2
)
2
+3×(-class="stub"1
2
)
3
+…+n(-class="stub"1
2
)
n
](11分)
class="stub"3
2
Sn=6[1+(-class="stub"1
2
)+(-class="stub"1
2
)
2
+…+(-class="stub"1
2
)
n-1
-n(-class="stub"1
2
)
n
](12分)
=6[
1-(-class="stub"1
2
)
n
1+class="stub"1
2
-n(-class="stub"1
2
)
n
](13分)
∴Sn=class="stub"8
3
-class="stub"4
3
(3n+2)×(-class="stub"1
2
)
n
(14分)

更多内容推荐