优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 必做题:(本小题满分10分,请在答题指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)已知an(n∈N*)是二项式(2+x)n的展开式中x的一次项的系数.(Ⅰ)求an;(Ⅱ)是否存在-数学
必做题:(本小题满分10分,请在答题指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)已知an(n∈N*)是二项式(2+x)n的展开式中x的一次项的系数.(Ⅰ)求an;(Ⅱ)是否存在-数学
题目简介
必做题:(本小题满分10分,请在答题指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)已知an(n∈N*)是二项式(2+x)n的展开式中x的一次项的系数.(Ⅰ)求an;(Ⅱ)是否存在-数学
题目详情
必做题:(本小题满分10分,请在答题指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
已知a
n
(n∈N
*
)是二项式(2+x)
n
的展开式中x的一次项的系数.
(Ⅰ)求a
n
;
(Ⅱ)是否存在等差数列{b
n
},使a
n
=b
1
c
n
1
+b
2
c
n
2
+b
3
c
n
3
+…+b
n
c
n
n
对一切正整数n都成立?并证明你的结论.
题型:解答题
难度:中档
来源:不详
答案
(I)∵((2+x)n的展开式的通项为:Tr+1=Cnr2n-rxr(r=0,1,2…n)
令r=1可得an=Cnr2n-r=n•2n-1
(II)若存在等差数列{bn},满足已知条件
则当n=1时,b1=a1=1
当n=2时,a2=b1C21+b2C22即4=4=2+b2,所以b2=2
当n=3时,a3=b1C31+b2C32+b3C33即12=3+6+b3,所以b3=3
由上述结果,猜想bn=n
下面证明:当bn=n时,an=b1Cn1+b2Cn2+…+bnCnn对一切正整数n都成立
即证n•2n-1=Cn1+2Cn2+…+nCnn成立
(法一)设S=Cn1+2Cn2+…+nCnn
S=nCnn+(n-1)Cnn-1+…+Cn1
则2S=nCn0+nCn1+…+nCnn=n(Cn0+Cn1+…+Cnn)=n•2n
∴S=n•2n-1
即n•2n-1=Cn1+2Cn2+…+nCnn成立
(法二)∵kCnk=
k
class="stub"n!
k!(n-k)!
=
class="stub"n!
(k-1)!(n-k)!
=
n
(n-1)!
(k-1)![(n-1)-(k-1)]!
=nCn-1k-1
∴Cn1+2Cn2+…+nCnn=n(Cn-10+Cn-11+…+Cn-1n-1)=n•2n-1
综上可得,存在等差数列bn=n满足已知条件.
上一篇 :
已知{an}是递增的等差数列,它的
下一篇 :
已知等比数列{an}的各项均为正
搜索答案
更多内容推荐
设数列{an}满足a1+2a2=3,且对任意的n∈N*,点Pn(n,an)都有,则{an}的前n项和Sn为[]A.B.C.D.-高三数学
在等差数列{an}中,a1=2,a1+a2+a3=12.(1)求数列{an}的通项公式;(2)令bn=an•3n,求数列{bn}的前n项和Sn.-高二数学
已知数列{1n(n+1)}的前n项和为Sn,则S99等于()A.1B.99C.9899D.99100-数学
求数列的前项和.-数学
已知数列{an}是等差数列,且a1=1,a1+a2+a3=6.(Ⅰ)求数列{an}的通项公式;(Ⅱ)令bn=an2n.求数列{bn}前n项和的公式.-高二数学
数列{an}的前n项和Sn,a1=1,an+1=2Sn.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=log3an,求数列{bn}的前n项和Tn.-高二数学
(1)已知等差数列{an}中,d=13,n=37,sn=629,求a1及an(2)求和1+1,12+3,14+5,…,12n-1+2n-1.-高二数学
数列的前项和为()A.B.C.D.-数学
已知数列{an}的前n项和为Sn,其中a1=12,5Sn=7an-an-1+5Sn-1(n≥2);等差数列{bn},其中b3=2,b5=6,.(1)求数列{an}的通项公式;(2)若cn=(bn+3)
已知递增的等比数列{an}的前三项之积为512,且这三项分别依次减去1、3、9后又成等差数列.(1)求数列{an}的通项公式;(2)若Tn=1a1+2a2+3a3+…+nan,求Tn.-高二数学
数列11+2,11+2+3,…11+2+…+n的前n项和为()A.nn+1B.2nn+1C.nn+2D.n2(n+1)-高二数学
⑴求和:;⑵求和:;⑶求和:.-数学
(文)Sn=1-2+3-4+5-6+…+(-1)n+1•n,则S100+S200+S301等于()A.1B.-1C.51D.52-高二数学
已知数列{an},Sn是其n前项的和,且满足3an=2Sn+n(n∈N*)(1)求证:数列{an+12}为等比数列;(2)记Tn=S1+S2+L+Sn,求Tn的表达式;(3)记Cn=23(an+12)
观察以下各式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,你得到的一般性结论是.(要求:用n的表达式表示,其中n).-高三数学
已知数列an的前项和Sn=2n+2-4(n∈N*),函数f(x)对任意的x∈R都有f(x)+f(1-x)=1,数列{bn}满足bn=f(0)+f(1n)+f(2n)…+f(n-1n)+f(1).(1)
已知数列{an}的前n项和为sn满足sn=14(an+1)2,且an>0.(1)求数列{an}的通项公式an;(2)令bn=20-an,求数列{bn}的前n项和Tn的最大值.-高二数学
已知数列{an}的前n项和是sn=-32n2+2052n,(1)求数列的通项公式an;(2)求数列{|an|}的前n项和.-高二数学
求数列的前项和.-数学
已知数列{an}是一个等差数列,且a2=1,a5=-5.(1)求{an}的通项公式an和前n项和Sn;(2)设Cn=5-an2,bn=2cn求数列{bn}的前n项和Tn.-高二数学
已知等差数列{an}中,公差d=-4,a2,a3,a6成等比数列.(1)求数列{an}的通项公式;(2)若数列{an}的前k项和Sk=-96,求k的值.-高二数学
已知数列{an}:1,,……,求它的前n项和。-高二数学
在数列{an}中,an=1n+1+2n+1+…+nn+1,又bn=2an•an+1,求数列{bn}的前n项的和.-数学
数列{an}中an+1+an=3n-54(n∈N*).(1)若a1=-20,求数列的通项公式;(2)设Sn为{an}的前n项和,证明:当a1>-27时,有相同的n,使Sn与|an+1+an|都取最小值
已知等差数列{an}是递增数列,且不等式x2-6x+8<0的解集为{x|a2<x<a4}.(1)求数列{an}的通项公式;(2)若bn=1anan+1,求数列{bn}的前项的和Sn.-高二数学
练习:求1002-992+982-972+…+22-12的和.-数学
设数列{an}的前n项和为Sn,已知a1=1,Sn+1=4an+2(Ⅰ)设bn=an+1-2an,证明数列{bn}是等比数列(Ⅱ)求数列{an}的通项公式.(Ⅲ)设cn=2nbn,求数列{cn}的前n
已知数列{an}中,a1=-1128,an≠0,Sn+1+Sn=3an+1+164.(1)求an;(2)若bn=log4|an|,Tn=b1+b2+…+bn,则当n为何值时,Tn取最小值?求出该最小值
求数列的前项和.-数学
已知数列{an}的前n项和Sn=-n2+kn(其中k∈N+),且Sn的最大值为8。(1)确定常数k,求an;(2)求数列的前n项和Tn。-高三数学
定义一种新运算*,满足n*k=nλk-1(n,k∈N*λ为非零常数).(1)对于任意给定的k,设an=n*k(n=1,2,3,…),证明:数列{an}是等差数列;(2)对于任意给定的n,设bk=n*k
已知等差数列{an}满足a3=6,a4+a6=20(1)求通项an;(2)设{bn-an}是首项为1,公比为3的等比数列,求数列{bn}的通项公式及其前n项和Tn.-高二数学
在等比数列{an}中,Sn为{an}的前n项和,且S3=72,S6=632,(1)求an.(2)求数列{nan}的前n项和Tn.-高一数学
已知数列{an}的通项公式an=-2n+11,前n项和Sn.(1)求数列{an}的前n项和Sn;(2)|a1|+|a2|+|a3|+…+|a14|.-高二数学
在等差数列{an}中,a1=8,a3=4.(1)求数列{an}的通项公式;(2)设Sn=|a1|+|a2|+…+|an|,求Sn;(3)设bn=1n(12-an)(n∈N*),求Tn=b1+b2+…+
设函数定义如下表,数列满足且,则.x1234541352-数学
递增的等比数列{an}的前n项和为Sn,且S2=6,S4=30(I)求数列{an}的通项公式.(II)若bn=anlog12an,数列{bn}的前n项和为Tn,求Tn+n•2n+1>50成立的最小正整
根据程序框图,将输出的x,y值依次分别记为x1,x2,…,x2013;y1,y2,…,y2013(Ⅰ)写出数列{xn}的递推公式,求{xn}的通项公式;(Ⅱ)写出数列{yn}的递推公式,求{yn}的通
设数列{an}的前n项和为Sn,且Sn=4an+2n+1,n∈N*.(1)求证:{an-2}是等比数列;(2)求数列{nan}前n项和Tn.-高二数学
已知an=logn+1(n+2),我们把使乘积a1a2a3…an为整数的n的值叫做“劣数”,则在区间(1,2009)内的所有劣数的和为()。-高二数学
已知:数列{an}的前n项和为Sn,且满足Sn=2an-n,(n∈N*).(Ⅰ)求:a1,a2的值;(Ⅱ)求:数列{an}的通项公式;(Ⅲ)若数列{bn}的前n项和为Tn,且满足bn=nan,(n∈N
数列{an}的前n项的和Sn=2an-1(n∈N*),数列{bn}满足:b1=3,Sn+1=an+bn(n∈N*).(1)求证:数列{an}为等比数列;(2)求数列{bn}的前n项的和Tn.-高二数学
已知公差d不为0的等差数列{an}中,a1=1,且a1,a3,a7成等比数列.(1)求通项an及前n项和Sn;(2)若有一新数列{bn},且bn=1anan+1,求数列{bn}的前n项和Tn.-高二数
S=11+3+13+5+…+12009+2011=______.-数学
设数列{an}满足a1=a,an+1=can+1-c,n∈N*其中a,c为实数,且c≠0(Ⅰ)求数列{an}的通项公式(Ⅱ)设a=12,c=12,bn=n(1-an),n∈N*,求数列{bn}的前n项
已知数列{an}的前n项和Sn=2n2-3n,而a1,a3,a5,a7,组成一新数列{bn},则数列{bn}的前n项和为()A.Tn=2n2-nB.Tn=4n2+3nC.Tn=2n2-3nD.Tn=4
已知数列{an}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=2n•(an+2),求数列{bn}的前n项和Sn.-高二数学
设等差数列{an}的前n项和为Sn,且a1=2,a3=6.(1)求数列{an}的通项公式;(2)设数列{1Sn}的前n项和为Tn,求T2013的值.-高二数学
如图,在面积为1的正△A1B1C1内作正△A2B2C2,使A1A2=2A2B1,B1B2=2B2C1,C1C2=2C2A1,依此类推,在正△A2B2C2内再作正△A3B3C3,….记正△AiBiCi的
已知等比数列{an}单调递增,a1+a4=9,a2a3=8,bn=log22an.(Ⅰ)求an;(Ⅱ)若Tn=1b1b2+1b2b3+…+1bnbn+1>0.99,求n的最小值.-高二数学
返回顶部
题目简介
必做题:(本小题满分10分,请在答题指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)已知an(n∈N*)是二项式(2+x)n的展开式中x的一次项的系数.(Ⅰ)求an;(Ⅱ)是否存在-数学
题目详情
已知an(n∈N*)是二项式(2+x)n的展开式中x的一次项的系数.
(Ⅰ)求an;
(Ⅱ)是否存在等差数列{bn},使an=b1cn1+b2cn2+b3cn3+…+bncnn对一切正整数n都成立?并证明你的结论.
答案
令r=1可得an=Cnr2n-r=n•2n-1
(II)若存在等差数列{bn},满足已知条件
则当n=1时,b1=a1=1
当n=2时,a2=b1C21+b2C22即4=4=2+b2,所以b2=2
当n=3时,a3=b1C31+b2C32+b3C33即12=3+6+b3,所以b3=3
由上述结果,猜想bn=n
下面证明:当bn=n时,an=b1Cn1+b2Cn2+…+bnCnn对一切正整数n都成立
即证n•2n-1=Cn1+2Cn2+…+nCnn成立
(法一)设S=Cn1+2Cn2+…+nCnn
S=nCnn+(n-1)Cnn-1+…+Cn1
则2S=nCn0+nCn1+…+nCnn=n(Cn0+Cn1+…+Cnn)=n•2n
∴S=n•2n-1
即n•2n-1=Cn1+2Cn2+…+nCnn成立
(法二)∵kCnk=k
∴Cn1+2Cn2+…+nCnn=n(Cn-10+Cn-11+…+Cn-1n-1)=n•2n-1
综上可得,存在等差数列bn=n满足已知条件.