设数列{an},{bn}都是正项等比数列,Sn,Tn分别为数列{lgan}与{lgbn}的前n项和,且SnTn=n2n+1,则logb5a5=______.-高二数学

题目简介

设数列{an},{bn}都是正项等比数列,Sn,Tn分别为数列{lgan}与{lgbn}的前n项和,且SnTn=n2n+1,则logb5a5=______.-高二数学

题目详情

设数列{an},{bn}都是正项等比数列,Sn,Tn分别为数列{lgan}与{lgbn}的前n项和,且
Sn
Tn
=
n
2n+1
,则logb5a5=______.
题型:填空题难度:中档来源:不详

答案

设正项等比数列{an}的公比为q,设正项等比数列{bn}的公比为p,则数列{lgan}是等差数列,公差为lgq,{lgbn}是等差数列,公差为lgp.
故Sn =n•lga1+
n(n-1)
2
•lgq
,同理可得 Tn =n•lgb1+
n(n-1)
2
•lgp

Sn
Tn
=class="stub"n
2n+1
=
lga1+class="stub"n-1
2
lgq
lgb1+class="stub"n-1
2
lgp

logb5a5=
lga5
lgb5
=
lga1+4lgq
lgb1+4lgp
=
S9
T9
=class="stub"9
19

故答案为 class="stub"9
19

更多内容推荐