已知数列{Pn}满足:(1)P1=23,P2=79;(2)Pn+2=23Pn+1+13Pn.(Ⅰ)设bn=Pn+1-Pn,证明数列{bn}是等比数列;(Ⅱ)求limn→∞Pn.-数学

题目简介

已知数列{Pn}满足:(1)P1=23,P2=79;(2)Pn+2=23Pn+1+13Pn.(Ⅰ)设bn=Pn+1-Pn,证明数列{bn}是等比数列;(Ⅱ)求limn→∞Pn.-数学

题目详情

已知数列{Pn}满足:(1)P1=
2
3
P2=
7
9
;(2)Pn+2=
2
3
Pn+1+
1
3
Pn

(Ⅰ)设bn=Pn+1-Pn,证明数列{bn}是等比数列;
(Ⅱ)求
lim
n→∞
Pn
题型:解答题难度:中档来源:不详

答案

(Ⅰ)bn+1=Pn+2-Pn+1=-class="stub"1
3
Pn+1+class="stub"1
3
Pn=-class="stub"1
3
bn

b1=class="stub"1
9

∴数列{bn}是等比数列.
(Ⅱ)由(Ⅰ)知bn=class="stub"1
9
(-class="stub"1
3
)n-1=(-class="stub"1
3
)n+1

Pn+1-Pn=bn=(-class="stub"1
3
)n+1

∴Pn=P1+(P2-P1)+(P3-P2)+…+(Pn-Pn-1)=class="stub"2
3
+(-class="stub"1
3
)2+(-class="stub"1
3
)3++(-class="stub"1
3
)n
=class="stub"3
4
+class="stub"1
4
•(-class="stub"1
3
)n

lim
n→∞
Pn=
lim
n→∞
[class="stub"3
4
+class="stub"1
4
•(-class="stub"1
3
)n]=class="stub"3
4

更多内容推荐