在R上可导的函数f(x)=13x3+12ax2+2bx+c,当x∈(0,1)时取得极大值.当x∈(1,2)时取得极小值,则b-2a-1的取值范围是()A.(14,1)B.(12,1)C.(-12,14

题目简介

在R上可导的函数f(x)=13x3+12ax2+2bx+c,当x∈(0,1)时取得极大值.当x∈(1,2)时取得极小值,则b-2a-1的取值范围是()A.(14,1)B.(12,1)C.(-12,14

题目详情

在R上可导的函数f(x)=
1
3
x3+
1
2
ax2+2bx+c
,当x∈(0,1)时取得极大值.当x∈(1,2)时取得极小值,则
b-2
a-1
的取值范围是(  )
A.(
1
4
,1)
B.(
1
2
,1)
C.(-
1
2
1
4
)
D.(
1
4
1
2
)
题型:单选题难度:中档来源:不详

答案

∵f(x)=class="stub"1
3
x3+class="stub"1
2
ax2+2bx+c
,∴f′(x)=x2+ax+2b,
设x2+ax+2b=(x-x1)(x-x2),(x1<x2)
则x1+x2=-a,x1x2=2b,
因为函数f(x)当x∈(0,1)时取得极大值,x∈(1,2)时取得极小值
∴0<x1<1,1<x2<2,
∴1<-a<3,0<2b<2,-3<a<-1,0<b<1.∴-2<b-2<-1,-4<a-1<-2,
class="stub"1
4
<class="stub"b-2
a-1
<1

故选A.

更多内容推荐