已知实数a满足1<a≤2,设函数f(x)=13x3-a+12x2+ax.(Ⅰ)当a=2时,求f(x)的极小值;(Ⅱ)若函数g(x)=4x3+3bx2-6(b+2)x(b∈R)的极小值点与f(x)的极小

题目简介

已知实数a满足1<a≤2,设函数f(x)=13x3-a+12x2+ax.(Ⅰ)当a=2时,求f(x)的极小值;(Ⅱ)若函数g(x)=4x3+3bx2-6(b+2)x(b∈R)的极小值点与f(x)的极小

题目详情

已知实数a满足1<a≤2,设函数f (x)=
1
3
x3-
a+1
2
x2+ax.
(Ⅰ) 当a=2时,求f (x)的极小值;
(Ⅱ) 若函数g(x)=4x3+3bx2-6(b+2)x (b∈R) 的极小值点与f (x)的极小值点相同,求证:g(x)的极大值小于等于10.
题型:解答题难度:中档来源:不详

答案

(Ⅰ)当a=2时,f′(x)=x2-3x+2=(x-1)(x-2).
列表如下:
x(-∞,1)1(1,2)2(2,+∞)
f′(x)+0-0+
f(x)单调递增极大值单调递减极小值单调递增
所以,f(x)的极小值为f(2)=class="stub"2
3

(Ⅱ)f′(x)=x2-(a+1)x+a=(x-1)(x-a).
由于a>1,
所以f(x)的极小值点x=a,则g(x)的极小值点也为x=a、
而g′(x)=12x2+6bx-6(b+2)=6(x-1)(2x+b+2),
所以a=-class="stub"b+2
2

即b=-2(a+1).
又因为1<a≤2,
所以g(x)极大值=g(1)
=4+3b-6(b+2)
=-3b-8
=6a-2≤10.
故g(x)的极大值小于等于10.

更多内容推荐