设数列{an}的前n项和为Sn,a1=2,Sn=nan-n(n-1).(Ⅰ)求数列{an}的通项公式;(Ⅱ)若数列{bn}满足:an=b13+1+b23×2+1+b33×3+1+…+bn3n+1,求数

题目简介

设数列{an}的前n项和为Sn,a1=2,Sn=nan-n(n-1).(Ⅰ)求数列{an}的通项公式;(Ⅱ)若数列{bn}满足:an=b13+1+b23×2+1+b33×3+1+…+bn3n+1,求数

题目详情

设数列{an}的前n项和为Sn,a1=2,Sn=nan-n(n-1).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足:an=
b1
3+1
+
b2
3×2+1
+
b3
3×3+1
+…+
bn
3n+1
,求数列{bn}的通项公式;
(Ⅲ)令cn=
anbn
4
(n∈N*),求数列{cn}的前n项和Tn
题型:解答题难度:中档来源:不详

答案

(I)n≥2时,Sn=nan-n(n-1),
∴Sn-1=(n-1)an-1-(n-1)(n-2),
两式相减得an=nan-(n-1)an-1-2(n-1),则(n-1)an=(n-1)an-1+2(n-1),
∴an=an-1+2
∴{an}是首项为2,公差为2的等差数列,
∴an=2n;
(II)∵an=
b 1
3+1
+
b 2
3×2+1
+
b 3
3×3+1
+…+
bn
3n+1

∴an-1=
b 1
3+1
+
b 2
3×2+1
+
b 3
3×3+1
+…+
b n-1
3(n-1)+1

∴当n≥2时,有an-an-1=
b n
3n+1

由(I)得an-an-1=2,
∴bn=2(3n+1),
而当n=1时,也成立,
∴数列{bn}的通项公式bn=2(3n+1)(n∈N*),
(III)cn=
a nb n
4
=
2n•2(3n+1)
4
=3n2+n,
∴数列{cn}的前n项和Tn=3(12+22+32+…+n2)+(1+2+3+…+n)
=3×class="stub"1
6
n(n+1)(2n+1)+class="stub"1
2
n(n+1)
=class="stub"1
6
n(n+1)(4n+5).

更多内容推荐