已知数列{an}的前n项和Sn与通项an之间满足关系Sn=12-12an(I)求数列{an}的通项公式;(II)设f(x)=log3x,bn=f(a1)+f(a2)+L+f(an),Tn=1b1+1b

题目简介

已知数列{an}的前n项和Sn与通项an之间满足关系Sn=12-12an(I)求数列{an}的通项公式;(II)设f(x)=log3x,bn=f(a1)+f(a2)+L+f(an),Tn=1b1+1b

题目详情

已知数列{an}的前n项和Sn与通项an之间满足关系Sn=
1
2
-
1
2
an

(I)求数列{an}的通项公式;
(II)设f(x)=log3x,bn=f(a1)+f(a2)+L+f(an),Tn=
1
b1
+
1
b2
+L+
1
bn
,求T2012
(III)若cn=an•f(an),求{cn}的前n项和an
题型:解答题难度:中档来源:不详

答案

(I)n=1时,a1=S1=class="stub"1
2
-class="stub"1
2
a1,∴a1=class="stub"1
3
                            (1分)
n≥2时,an=Sn-Sn-1=class="stub"1
2
-class="stub"1
2
an
-class="stub"1
2
+class="stub"1
2
an-1
,∴an=class="stub"1
3
an-1,
即数列{an}是首项为class="stub"1
3
,公比为class="stub"1
3
的等比数列                 (3分)
故an=(class="stub"1
3
)n
                                           (4分)
(II)由已知可得:f(an)=-n,则bn=f(a1)+f(a2)+…+f(an)=-1-2-…-n=-
n(n+1)
2
(5分)
class="stub"1
bn
=-2(
class="stub"1
n
-class="stub"1
n+1
)                                (6分)
∴Tn=class="stub"1
b1
+class="stub"1
b2
+…+class="stub"1
bn
=2[(1-class="stub"1
2
)+(class="stub"1
2
-class="stub"1
3
)+…+(class="stub"1
n
-class="stub"1
n+1
)]=-2(1-class="stub"1
n+1

∴T2012=-class="stub"4024
2013
      (8分)
(III)由题意:cn=an•f(an)=-n×(class="stub"1
3
)
n
,故{cn}的前n项和un=-[1×(class="stub"1
3
)
1
+2×(class="stub"1
3
)
2
+…+n×(class="stub"1
3
)
n
]①
class="stub"1
3
un=-[1×(class="stub"1
3
)
2
+2×(class="stub"1
3
)
3
+…+n×(class="stub"1
3
)
n+1
]②
①-②可得:class="stub"2
3
un=-[(class="stub"1
3
)
1
+(class="stub"1
3
)
2
+(class="stub"1
3
)
3
+…+(class="stub"1
3
)
n
-n×(class="stub"1
3
)
n+1
](12分)
class="stub"2
3
un=-class="stub"1
2
[1-(class="stub"1
3
)
n
]+n×(class="stub"1
3
)
n+1

∴un=-class="stub"3
4
+class="stub"3
4
×(class="stub"1
3
)
n
+class="stub"3
2
(class="stub"1
3
)
n+1
                      (14分)

更多内容推荐