已知数列{an}中,a1=6,an+1=an+1,数列{bn},点(n,bn)在过点A(0,1)的直线l上,若l上有两点B、C,向量BC=(1,2).(1)求数列{an},{bn}的通项公式;(2)设

题目简介

已知数列{an}中,a1=6,an+1=an+1,数列{bn},点(n,bn)在过点A(0,1)的直线l上,若l上有两点B、C,向量BC=(1,2).(1)求数列{an},{bn}的通项公式;(2)设

题目详情

已知数列{an}中,a1=6,an+1=an+1,数列{bn},点(n,bn)在过点A(0,1)的直线l上,若l上有两点B、C,向量
BC
=(1,2).
(1)求数列{an},{bn}的通项公式;
(2)设cn=2 bn,在ak与ak+1之间插入k个ck,依次构成新数列,试求该数列的前2013项之和;
(3)对任意正整数n,不等式(1+
1
b1
)(1+
1
b2
)•…•(1+
1
bn
)-a
n-2+an
≥0恒成立,求正数a的范围.
题型:解答题难度:中档来源:东坡区一模

答案

(1)∵an+1-an=1且a1=6,∴an=n+5,…(1分)
设l上任意一点P(x,y),则
AP
=(x,y-1),
由已知可得
AP
BC

∴y=2x+1,又l过点(n,bn),
∴bn=2n+1.…(4分)
(2)新数列:a1,c1,a2,c2,c2,a3,c3,c3,c3,a4,…,ak,ck,…,ak+1,
共计项数:k+1+class="stub"k+1
2
•k
经估算k=62,k+1+class="stub"k+1
2
•k=2016,项数接近2013,…(5分)
∴S2013=(a1+a2+…+a62)+(1×c1+2×c2+…+62×c62)-2c62       …(6分)
令T=1×c1+2×c2+…+62×c62,
T=1×23+2×25+3×27+…+62×2125
4T=1×25+2×27+…+61×2125+62×2127
两式相减得:T=class="stub"8+185×2127
9
     …(8分)
∴S2013=class="stub"6+67
2
+class="stub"8+185×2127
9
-2×2125=2263+class="stub"8+722×2125
9
.…(9分)
(3)变量分离得:a≤
(1+class="stub"1
b1
)(1+class="stub"1
b2
)…(1+class="stub"1
bn
)
2n+3
恒成立.…(10分)
令g(n)=
(1+class="stub"1
b1
)(1+class="stub"1
b2
)…(1+class="stub"1
bn
)
2n+3
     …(11分)
g(n+1)
g(n)
=
(1+class="stub"1
b1
)(1+class="stub"1
b2
)…(1+class="stub"1
bn
)(1+class="stub"1
bn+1
)
2n+5
×
2n+3
(1+class="stub"1
b1
)(1+class="stub"1
b2
)×…×(1+class="stub"1
bn
)

=class="stub"2n+4
2n+3
2n+5
≥1…(13分)
∵{g(n)}递增数列.
∴a∈(0,g(1))=(0,class="stub"4
15
5
].…(14分)

更多内容推荐