已知a=(sinx,3cosx),b=(cosx,cosx),f(x)=a•b.(1)若a⊥b,求x的取值集合;(2)求函数f(x)的周期及增区间.-数学

题目简介

已知a=(sinx,3cosx),b=(cosx,cosx),f(x)=a•b.(1)若a⊥b,求x的取值集合;(2)求函数f(x)的周期及增区间.-数学

题目详情

已知
a
=(sinx,
3
cosx),
b
=(cosx,cosx),f(x)=
a
b

(1)若
a
b
,求x的取值集合;(2)求函数f(x)的周期及增区间.
题型:解答题难度:中档来源:不详

答案

(1)∵
a
b
,∴
a
b
=0,
a
b
=sinxcosx+
3
cos2x=class="stub"1
2
sin2x+
3
2
cos2x+
3
2
=sin(2x+class="stub"π
3
)+
3
2

∴sin(2x+class="stub"π
3
)+
3
2
=0,即sin(2x+class="stub"π
3
)=-
3
2

∴2x+class="stub"π
3
=2kπ-class="stub"2π
3
或2x+class="stub"π
3
=2kπ-class="stub"π
3
(k∈Z),
解得:x=kπ-class="stub"π
2
或x=kπ-class="stub"π
3
(k∈Z),
∴x的取值集合为{x|x=kπ-class="stub"π
2
或x=kπ-class="stub"π
3
(k∈Z)};
(2)∵f(x)=
a
b
=sin(2x+class="stub"π
3
)+
3
2
,∴f(x)的周期T=class="stub"2π
2
=π,
∵y=sinx的增区间为[2kπ-class="stub"π
2
,2kπ+class="stub"π
2
](k∈Z),
由2kπ-class="stub"π
2
≤2x+class="stub"π
3
≤2kπ+class="stub"π
2
,解得:kπ-class="stub"5π
12
≤x≤kπ+class="stub"π
12

∴f(x)的增区间为[kπ-class="stub"5π
12
,kπ+class="stub"π
12
](k∈Z).

更多内容推荐