已知函数f(x)=sin2ωx+3sinωxsin(ωx+π2)+1(ω>0)的最小正周期为π.(Ⅰ)求ω的值;(Ⅱ)将函数y=f(x)的图象向左平移π6个单位后,得到函数y=g(x)的图象,求g(x

题目简介

已知函数f(x)=sin2ωx+3sinωxsin(ωx+π2)+1(ω>0)的最小正周期为π.(Ⅰ)求ω的值;(Ⅱ)将函数y=f(x)的图象向左平移π6个单位后,得到函数y=g(x)的图象,求g(x

题目详情

已知函数f(x)=sin2ωx+
3
sinωxsin(ωx+
π
2
)+1
(ω>0)的最小正周期为π.
(Ⅰ)求ω的值;
(Ⅱ)将函数y=f(x)的图象向左平移
π
6
个单位后,得到函数y=g(x)的图象,求g(x)的单调递减区间;
(Ⅲ)求函数f(x)在区间[0,
3
]上的最值.
题型:解答题难度:中档来源:不详

答案

f(x)=sin2ωx+
3
sinωxsin(ωx+class="stub"π
2
)+1

=class="stub"1-cos2ωx
2
3
sinωxcosωx+1
=class="stub"3
2
-class="stub"1
2
cos2ωx+
3
2
sin2ωx

=class="stub"3
2
+sin(2ωx-class="stub"π
6
)

(I)由周期公式可得,T=class="stub"2π

∴ω=1,f(x)=class="stub"3
2
+sin(2x-class="stub"π
6
)

(II)由题意可得,g(x)=f(x+class="stub"π
6
)=class="stub"3
2
+
sin[2(x+class="stub"π
6
)-class="stub"π
6
]
=class="stub"3
2
+sin(2x+class="stub"π
6
)

class="stub"1
2
π+2kπ≤2x+class="stub"π
6
≤class="stub"3π
2
+2kπ
,k∈Z
可得,class="stub"π
6
+kπ≤x≤class="stub"2π
3
+kπ
k∈Z
函数g(x)的单独递减区间为[class="stub"π
6
+kπ,class="stub"2π
3
+kπ
],k∈Z
(III)由x∈[0,class="stub"2π
3
]可得,-class="stub"π
6
≤2x-class="stub"π
6
≤class="stub"7π
6

-class="stub"1
2
≤sin(2x-class="stub"π
6
)≤1

1≤f(x)≤class="stub"5
2

f(x) max=class="stub"5
2
,f(x)min=1

更多内容推荐