已知函数f(x)=(1+1tanx)sin2x+msin(x+π4)sin(x-π4).(1)当m=0时,求函数f(x)在区间(π8,3π4)上的取值范围;(2)当tanα=2时,f(α)=65,求m

题目简介

已知函数f(x)=(1+1tanx)sin2x+msin(x+π4)sin(x-π4).(1)当m=0时,求函数f(x)在区间(π8,3π4)上的取值范围;(2)当tanα=2时,f(α)=65,求m

题目详情

已知函数f(x)=(1+
1
tanx
)sin2x+msin(x+
π
4
)sin(x-
π
4
)

(1)当m=0时,求函数f(x)在区间(
π
8
4
)
上的取值范围;
(2)当tanα=2时,f(α)=
6
5
,求m的值.
题型:解答题难度:中档来源:不详

答案

(1)当m=0时,f(x)=(1+class="stub"cosx
sinx
)sin2x=sin2x+sinxcosx=class="stub"1-cos2x+sin2x
2
=class="stub"1
2
[
2
sin(2x-class="stub"π
4
)+1]
由已知x∈(class="stub"π
8
,class="stub"3π
4
)
,f(x)的值域为(0,
1+
2
2

(2)∵f(x)=(1+class="stub"1
tanx
)sin2x+msin(x+class="stub"π
4
)sin(x-class="stub"π
4
)

=sin2x+sinxcosx+
m(cosclass="stub"π
2
-cos2x)
2

=class="stub"1-cos2x
2
+class="stub"sin2x
2
-class="stub"mcos2x
2

=class="stub"1
2
[sin2x-(1+m)cos2x]+class="stub"1
2

f(α)=class="stub"6
5

∴f(α)=class="stub"1
2
[sin2α-(1+m)cos2α]+class="stub"1
2
=class="stub"6
5
  ①
当tanα=2,得:sin2a=class="stub"2sinαcosα
sin2α+cos2α
=class="stub"2tanα
1+tan2α
=class="stub"4
5
,cos2α=-class="stub"3
5

代入①式,解得m=-class="stub"7
5

更多内容推荐