优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 数列{an}中,a1=8,a4=2,且满足an+2-2an+1+an=0(1)求数列的通项公式;(2)设Sn=|a1|+|a2|+…+|an|,求Sn.-数学
数列{an}中,a1=8,a4=2,且满足an+2-2an+1+an=0(1)求数列的通项公式;(2)设Sn=|a1|+|a2|+…+|an|,求Sn.-数学
题目简介
数列{an}中,a1=8,a4=2,且满足an+2-2an+1+an=0(1)求数列的通项公式;(2)设Sn=|a1|+|a2|+…+|an|,求Sn.-数学
题目详情
数列{a
n
}中,a
1
=8,a
4
=2,且满足a
n+2
-2a
n+1
+a
n
=0
(1)求数列的通项公式;
(2)设S
n
=|a
1
|+|a
2
|+…+|a
n
|,求S
n
.
题型:解答题
难度:中档
来源:不详
答案
(1)an+2-2an+1+an=0∴an+2-an+1=an+1-an
∴{an+1-an}为常数列,
∴{an}是以a1为首项的等差数列,
设an=a1+(n-1)d,a4=a1+3d,
∴
d=
class="stub"2-8
3
=-2
,
∴an=10-2n.
(2)∵an=10-2n,令an=0,得n=5.
当n>5时,an<0;当n=5时,an=0;当n<5时,an>0.
∴当n>5时,Sn=|a1|+|a2|+…+|an|=a1+a2+…+a5-(a6+a7+…+an)=T5-(Tn-T5)=2T5-Tn,Tn=a1+a2+…+an.
当n≤5时,Sn=|a1|+|a2|+…+|an|=a1+a2+…+an=Tn.
∴
S
n
=
9n-
n
2
,(n≤5)
n
2
-9n+40,(n>5).
上一篇 :
已知数列{an}前n项和为Sn且2an
下一篇 :
已知数列{an),其中a2=6,an+1+an-1
搜索答案
更多内容推荐
设数列{an}满足a1=0且11-an+1-11-an=1.(Ⅰ)求{an}的通项公式;(Ⅱ)设bn=1-an+1n,记Sn=nk=1bk,证明:Sn<1.-数学
若a,4,3a为等差数列的连续三项,则a0+a1+a2+…+a9的值为______.-数学
等差数列{an}中,已知an=3n-1,若数列{1anan+1}的前n项和为425,则n的值为()A.13B.14C.15D.16-数学
设数列{an}的前n项和为Sn,令Tn=S1+S2+…+Snn,称Tn为数列a1,a2,…,an的“理想数”,已知数列a1,a2,…,a401的“理想数”为2010,那么数列6,a1,a2,…,a40
(理科)已知各项均为正数的数列{an}的前n项和为Sn,且对任意正整数n,点(an,Sn)都在直线2x-y-12=0上.(1)求数列{an}的通项公式;(2)若an2=2-bn设Cn=bnan求数列{
已知数列{an}满足an+1=an+n,a1=1,则an=______.-数学
设{an}是公差不为零的等差数列,Sn为其前n项和,满足S4=8且a1、a2、a5成等比数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设数列{bn}满足:bn-an=2n+1,n∈N*,Tn为数列{bn
数列{an}的前n项和为sn,sn=12n2+12n,则数列{1anan+1}的前100项的和为()A.100101B.99101C.99100D.101100-数学
已知各项均正的数列{an}的前n项和为Sn,且2Sn=12(an2+an)(1)求{an}的通项公式(2)设数列bn=1anan+2,求数列{bn}的前n项的和Tn.-数学
已知数列{an}的前n项和是Sn,且Sn+12an=1.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=log3(1-Sn+1),求适合方程1b1b2+1b2b3+…+1bnbn+1=2551的n的值.
设数列{an}是等比数列,a1=C2m3m-2•Pm-11(m∈N*),公比q是(x+14x2)4的展开式中的第二项(按x的降幂排列).(1)求常数m的值;(2)用n、x表示数列{an}的前项和Sn;
设数列{an}的前项n和为Sn,点(n,Snn)(n∈N+)均在函数y=2x-1的图象上.(1)求数列{an}的通项公式;(2)设bn=2n-1•an,Tn是数列{bn}的前n项和,求Tn.-数学
一个数列的前n项和Sn=1-2+3-4+…+(-1)n+1n,则S17+S33+S50=()。-高二数学
在数列{an}中,a1=-60,an+1=an+3,则|a1|+|a2|+…+|a30|=()A.-445B.765C.1080D.3105-数学
数列{an}的前n项和为Sn.若a1=1,且2Sn=(n+1)an,n∈N*.(I)求{an}的通项公式和Sn;(II)设bn=a2n,求{bn}的前n项和.-数学
已知等差数列{an}的前n项和为Sn,且a3=5,S15=225.数列{bn}是等比数列,b3=a2+a3,b2b5=128(其中n=1,2,3,…).(I)求数列{an}和{bn}的通项公式;(II
设数列{an}满足a1+2a2+22a3+…+2n-1an=n2,n∈N*.(1)求数列{an}的通项公式;(2)设bn=1log12an,cn=bnbn+1,记Sn=c1+c2+…+cn,证明:Sn
设数列{an}的通项公式为an=2n-7(n∈N+),则|a1|+|a2|+…+|a15|等于[]A、139B、153C、144D、178-高二数学
定义:数列{an}的前n项的“均倒数”为na1+a2+…+an.若数列{an}的前n项的“均倒数”为1n+2,(1)求数列{an}的通项公式;(2)已知bn=tan(t>0),数列{bn}的前n项和S
等比数列{an}的首项为a1=2,公比q=3,则1a1a2+1a2a3+…+1anan+1=______.-数学
数列22+122-1,32+132-1,42+142-1,…前10项和为______.-数学
已知f(n)=1n+1n+1+1n+2+…+1n2,则()A.f(n)中共有n项,当n=2时,f(2)=12+13B.f(n)中共有n+1项,当n=2时,f(2)=12+13+14C.f(n)中共有n
已知数列{an}的前n项和为2Sn=3an-2.(1)求数列{an}的通项公式,(2)若bn=log13(Sn+1),求数列{bnan}的前n项和Tn.-数学
已知数列{an}的各项均为正数,其前n项和为Sn,且满足2Sn=an2+an(n∈N*).(Ⅰ)求a1,a2,a3;(Ⅱ)求数列{an}的通项公式;(Ⅲ)若bn=n(12)an,求数列{bn}的前n项
数列{an},前n项和Sn,满足a1=12,Sn+2an+1=1(n∈N*)(1)求数列{an}的通项公式;(2)求数列{nSn}前n项和Tn.-数学
数列112,214,318,4116,5132,…,的前n项之和等于______.-数学
若(1-3x)2010=a0+a1x+a2x2+…+a2010x2010(x∈R),则a14+a242+…+a201042010=______.-数学
12×4+14×6+16×8+,…,+12n(2n+2)=()A.n2n+2B.n4n+4C.2nn+1D.2n2n+1-数学
数列{an}满足:a1=1,且对每个n∈N*,an,an+1是方程x2+3nx+bn=0的两根,则b1+b2+b3+…+b20的和为()A.6385B.5836C.3658D.8365-数学
设数列{an}的前n项和为Sn,a1=2,Sn=nan-n(n-1).(Ⅰ)求数列{an}的通项公式;(Ⅱ)若数列{bn}满足:an=b13+1+b23×2+1+b33×3+1+…+bn3n+1,求数
已知数列{an}的前n项和Sn与通项an之间满足关系Sn=12-12an(I)求数列{an}的通项公式;(II)设f(x)=log3x,bn=f(a1)+f(a2)+L+f(an),Tn=1b1+1b
已知数列{an}中,a1=8,a4=2且满足an+2-2an+1+an=0(n∈N*)(1)求数列{an}的通项公式;(2)设Sn=|a1|+|a2|+…+|an|,求S20;(3)设bn=4n(14
已知数列{an}满足:a1=2,且anan+1-an=n;又数列{bn}满足:bn=2n-1+1.若数列{an}和{bn}的前n和分别为Sn和Tn,试比较Sn与Tn的大小.-数学
已知数列{an}的前n项和为sn,且an=n•3n,求sn.-数学
对于任意实数x,符号[x]表示x的整数部分,即[x]是不超过x的最大整数.计算:[log21]+[log22]+[log23]+[log24]+…+[log21024]的值=______.-数学
1-3+5-7+9-11+…-19=______.-数学
已知数列,其中a2=6且。(Ⅰ)求a1,a3,a4;(Ⅱ)求数列{an}的通项公式;(III)设数列{bn}为等差数列,其中,且为不等于零的常数,若,求。-高二数学
()。-高二数学
已知数列an=2n,前n项和为Sn,若数列{1Sn}的前n项和为Tn,则T2012的值为()A.20122011B.20102011C.20132012D.20122013-数学
已知数列{an}的各项均为正数,前n项和为Sn,且Sn=an(an+1)2(n∈N*)(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=12Sn,Tn=b1+b2+…+bn,求Tn.-数学
已知数列{an}的通项公式an=31-3n,求数列{|an|}的前n项和Hn.-数学
已知数列an的前n项和为Sn,a1=1,nan=Sn+2n(n-1)(n∈N*).(I)求数列an的通项公式;(II)设Tn=a1+122+a2+123+…+an+12n+1,求Tn的值.-数学
若数列{an}的项构成的新数列{an+1-Kan}是公比为l的等比数列,则相应的数列{an+1-1an}是公比为k的等比数列,运用此性质,可以较为简洁的求出一类递推数列的通项公式,并简称此-数学
若函数f(n)=n,n为奇数-n,n为偶数,an=f(n)+f(n+1),则a1+a2+a3+…+a2012=()A.-1B.0C.1D.2-数学
已知log3x=-1log23,求x+x2+x3+…+xn+…的前n项和.-数学
已知数列{an}和{bn},an=n,bn=2n,定义无穷数列{cn}如下:a1,b1,a2,b2,a3,b3,…,an,bn,…(1)写出这个数列{cn}的一个通项公式(不能用分段函数)(2)指出3
已知数列{an}中,a1=1,an=2an-1+1(n∈N*,n≥2),则该数列前n项和Sn=______.-数学
设等比数列{an}的前n项和为Sn,已知an+1=2Sn+2(n∈N*).(I)求数列{an}的通项公式;(Ⅱ)求数列{n+12an}的前n项和Tn.-数学
如图所示的表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列.第1列第2列第3列第4列第5列…第1行12…第2行121…第3行a…第4行b…第5行c……………………(1)求b+c-a
已知正项数列{an}的前n项和为Sn,且满足Sn+Sn-1=ka2n+2(n≥2,n∈N*,k>0),a1=1.(1)求数列{an}的通项公式;(2)若数列{1anan+1}的前n项和为Tn,是否存在
返回顶部
题目简介
数列{an}中,a1=8,a4=2,且满足an+2-2an+1+an=0(1)求数列的通项公式;(2)设Sn=|a1|+|a2|+…+|an|,求Sn.-数学
题目详情
(1)求数列的通项公式;
(2)设Sn=|a1|+|a2|+…+|an|,求Sn.
答案
∴{an+1-an}为常数列,
∴{an}是以a1为首项的等差数列,
设an=a1+(n-1)d,a4=a1+3d,
∴d=
∴an=10-2n.
(2)∵an=10-2n,令an=0,得n=5.
当n>5时,an<0;当n=5时,an=0;当n<5时,an>0.
∴当n>5时,Sn=|a1|+|a2|+…+|an|=a1+a2+…+a5-(a6+a7+…+an)=T5-(Tn-T5)=2T5-Tn,Tn=a1+a2+…+an.
当n≤5时,Sn=|a1|+|a2|+…+|an|=a1+a2+…+an=Tn.
∴Sn=