数列{an}中,a1=8,a4=2,且满足an+2-2an+1+an=0(1)求数列的通项公式;(2)设Sn=|a1|+|a2|+…+|an|,求Sn.-数学

题目简介

数列{an}中,a1=8,a4=2,且满足an+2-2an+1+an=0(1)求数列的通项公式;(2)设Sn=|a1|+|a2|+…+|an|,求Sn.-数学

题目详情

数列{an}中,a1=8,a4=2,且满足an+2-2an+1+an=0
(1)求数列的通项公式;
(2)设Sn=|a1|+|a2|+…+|an|,求Sn
题型:解答题难度:中档来源:不详

答案

(1)an+2-2an+1+an=0∴an+2-an+1=an+1-an
∴{an+1-an}为常数列,
∴{an}是以a1为首项的等差数列,
设an=a1+(n-1)d,a4=a1+3d,
d=class="stub"2-8
3
=-2

∴an=10-2n.
(2)∵an=10-2n,令an=0,得n=5.
当n>5时,an<0;当n=5时,an=0;当n<5时,an>0.
∴当n>5时,Sn=|a1|+|a2|+…+|an|=a1+a2+…+a5-(a6+a7+…+an)=T5-(Tn-T5)=2T5-Tn,Tn=a1+a2+…+an.
当n≤5时,Sn=|a1|+|a2|+…+|an|=a1+a2+…+an=Tn.
Sn=
9n-n2,(n≤5)
n2-9n+40,(n>5).

更多内容推荐