已知数列{an}和{bn}满足a1=m,an+1=λan+n,bn=an-2n3+49,{bn}的前n项和为Tn.(Ⅰ)当m=1时,求证:对于任意的实数λ,{an}一定不是等差数列;(Ⅱ)当λ=-12

题目简介

已知数列{an}和{bn}满足a1=m,an+1=λan+n,bn=an-2n3+49,{bn}的前n项和为Tn.(Ⅰ)当m=1时,求证:对于任意的实数λ,{an}一定不是等差数列;(Ⅱ)当λ=-12

题目详情

已知数列 {an}和{bn}满足 a1=m,an+1an+n,bn=an-
2n
3
+
4
9
,{bn}的前n项和为Tn
(Ⅰ)当m=1时,求证:对于任意的实数λ,{an}一定不是等差数列;
(Ⅱ) 当λ=-
1
2
时,试判断{bn}是否为等比数列;
(Ⅲ)在(Ⅱ)条件下,若1≤Tn≤2对任意的n∈N*恒成立,求实数m的范围.
题型:解答题难度:中档来源:不详

答案

(Ⅰ)当m=1时,a1=1.a2=λ+1,a3=λ(λ+1)+2=λ2+λ+2…(2分)
假设{an}是等差数列,由a1+a3=2a2,得λ2+λ+3=2(λ+1)
即λ2-λ+1=0,△=-3<0,方程无实根.
故对于任意的实数λ,
{an}一定不是等差数列…(5分)
(Ⅱ)当λ=-class="stub"1
2
时,an+1=-class="stub"1
2
an+n,bn=an-class="stub"2n
3
+class="stub"4
9
bn+1=an+1-
2(n+1)
3
+class="stub"4
9
=(-class="stub"1
2
an+n)-
2(n+1)
3
+class="stub"4
9
=-class="stub"1
2
an+class="stub"n
3
-class="stub"2
9

=-class="stub"1
2
(an-class="stub"2n
3
+class="stub"4
9
)=-class="stub"1
2
bn
b1=m-class="stub"2
3
+class="stub"4
9
=m-class="stub"2
9

当m≠class="stub"2
9
时,{bn}是以m-class="stub"2
9
为首项,-class="stub"1
2
为公比的等比数列
…(9分)
当m=class="stub"2
9
时,{bn}不是等比数列
…(10分)
(Ⅲ)当m=class="stub"2
9
Tn=0
,不成立…(11分)
m≠class="stub"2
9
Tn=class="stub"2
3
(m-class="stub"2
9
)[1-(-class="stub"1
2
)n]

当n为奇数时[1-(-class="stub"1
2
)n]∈(1,class="stub"3
2
]

当n为偶数[1-(-class="stub"1
2
)n]∈[class="stub"3
4
,1)
…(14分)
∵1≤Tn≤2对任意的n∈N*恒成立,
class="stub"2
3
(m-class="stub"2
9
)×class="stub"3
2
≤2
class="stub"2
3
(m-class="stub"2
9
)×class="stub"3
4
≥1
解得m=class="stub"20
9

从而求得m=class="stub"20
9
…(16分)

更多内容推荐