已知数列{an}满足an+1=2anan+2,an≠0,且a1=12,cn=(2-2anan)(12)n(n∈N*).(Ⅰ)求证:数列{1an}是等差数列,并求通项an;(Ⅱ)求Tn=c1+c2+…+

题目简介

已知数列{an}满足an+1=2anan+2,an≠0,且a1=12,cn=(2-2anan)(12)n(n∈N*).(Ⅰ)求证:数列{1an}是等差数列,并求通项an;(Ⅱ)求Tn=c1+c2+…+

题目详情

已知数列{an}满足an+1=
2an
an+2
an≠0
,且a1=
1
2
cn=(
2-2an
an
)(
1
2
)n(n∈N*)

(Ⅰ)求证:数列{
1
an
}
是等差数列,并求通项an
(Ⅱ)求Tn=c1+c2+…+cn的值.
题型:解答题难度:中档来源:不详

答案

(Ⅰ)∵an+1=
2an
an+2
an≠0

class="stub"1
an+1
=class="stub"1
an
+class="stub"1
2

数列{class="stub"1
an
}
是首项为class="stub"1
a1
=2,公差为class="stub"1
2
的等差数列,
class="stub"1
an
=class="stub"1
a1
+class="stub"1
2
(n-1)
=class="stub"1
2
n+class="stub"3
2

所以数列{an}的通项公式为an=class="stub"2
n+3

(Ⅱ)∵Cn=(n+1)•(class="stub"1
2
)
n

Tn=2×class="stub"1
2
+3×(class="stub"1
2
)
2
+…+(n+1)×(class="stub"1
2
)
n

class="stub"1
2
Tn=       2×(class="stub"1
2
)
2
+3×(class="stub"1
2
)
3
+…+(n+1)×(class="stub"1
2
)
n+1

由①-②得class="stub"1
2
Tn =1+(class="stub"1
2
)
2
+…+(class="stub"1
2
)
n
-(n+1)(class="stub"1
2
)
n+1


=1+
class="stub"1
4
[1-(class="stub"1
2
)
n-1
]
1-class="stub"1
2
-(n+1)•(class="stub"1
2
)
n+1

=class="stub"3
2
-class="stub"n+3
2n+1


Tn=3-class="stub"n+3
2n

更多内容推荐