已知{an}是等差数列,公差d>0,前n项和为Sn且满足a3•a4=117,a2+a5=22.对于数列{bn},其通项公式bn=Snn+C,如果数列{bn}也是等差数列.(1)求非零常数C的值;(2)

题目简介

已知{an}是等差数列,公差d>0,前n项和为Sn且满足a3•a4=117,a2+a5=22.对于数列{bn},其通项公式bn=Snn+C,如果数列{bn}也是等差数列.(1)求非零常数C的值;(2)

题目详情

已知{an}是等差数列,公差d>0,前n项和为Sn且满足a3•a4=117,a2+a5=22.对于数列{bn},其通项公式bn=
Sn
n+C
,如果数列{bn}也是等差数列.
(1)求非零常数C的值;      
(2)试求函数f(n)=
bn
(n+36)bn+1
(n∈N*)的最大值.
题型:解答题难度:中档来源:不详

答案

(1)∵{an}为等差数列,∴a3+a4=22…(1分)
由a3•a4=117,a3+a4=22知a3,a4是方程x2-22x+117=0的两个根
又d>0
∴a3=9,a4=13                                      …(2分)
∴d=4,a1=1
∴an=1+(n-1)×4=4n-3                            …(3分)
Sn=
a1+an
2
=
n(1+4n-3)
2
=n(2n-1)
…(4分)
bn=
n(2n-1)
n+c

∵数列{bn}也是等差数列
∴2b2=b1+b3…(6分)
解得:c=-class="stub"1
2
或0(舍)
c=-class="stub"1
2
时,bn=2n满足题意.                      …(7分)
(2)∵f(n)=
bn
(n+36)bn+1
=class="stub"2n
(n+36)2(n+1)
=class="stub"n
n2+37n+36
=class="stub"1
n+class="stub"36
n
+37
≤class="stub"1
2
36
+37
=class="stub"1
49

当且仅当n=class="stub"36
n
即n=6时取等号.
∴f(n)的最大值为class="stub"1
49
.                             …(14分)

更多内容推荐