设数列{an}的通项是关于x的不等式x2-x<(2n-1)x(n∈N′)的解集中整数的个数.(1)求an并且证明{an}是等差数列;(2)设m、k、p∈N*,m+p=2k,求证:1Sm+1Sp≥2Sk

题目简介

设数列{an}的通项是关于x的不等式x2-x<(2n-1)x(n∈N′)的解集中整数的个数.(1)求an并且证明{an}是等差数列;(2)设m、k、p∈N*,m+p=2k,求证:1Sm+1Sp≥2Sk

题目详情

设数列{an}的通项是关于x的不等式x2-x<(2n-1)x(n∈N′)的解集中整数的个数.
(1)求an并且证明{an}是等差数列;
(2)设m、k、p∈N*,m+p=2k,求证:
1
Sm
+
1
Sp
2
Sk

(3)对于(2)中的命题,对一般的各项均为正数的等差数列还成立吗?如果成立,请证明你的结论,如果不成立,请说明理由.
题型:解答题难度:中档来源:不详

答案

(1)不等式x2-x<(2n-1)x即x(x-2n)<0
解得:0<x<2n,其中整数有2n-1个
∴an=2n-1,
由通项公式可得:an-an-1=2,
∴数列{an}是等差数列;
(2)由(1)知Sn=
n(1+2n-1)
2
=n2

∴Sm=m2,Sp=p2,Sk=k2.
class="stub"1
Sm
+class="stub"1
Sp
-class="stub"2
Sk
=class="stub"1
m2
+class="stub"1
p2
-class="stub"2
k2
=
k2(m2+p2)-2m2p2
m2p2k2

2mp•mp-2m2p2
m2p2k2
=0,
class="stub"1
Sm
+class="stub"1
Sp
class="stub"2
Sk

(3)结论成立,证明如下:
设等差数列{an}的首项为a1,公差为d,
Sn=na1+
n(n-1)
2
d=
n(a1+an)
2

Sm+Sp-2Sk=ma1+
m(m-1)
2
d+pa1+
p(p-1)
2
d-[2ka1+k(k-1)d]
=(m+p)a1+
m2+p2-(m+p)
2
d-[2ka1+(k2-k)d]

把m+p=2k代入上式化简得Sm+Sp-2Sk=
m2+p2-2×(class="stub"m+p
2
)
2
2
•d=
(m-p)2d
4
≥0,
∴Sm+Sp≥2Sk.
SmSp=
mp(a1+am)(a1+ap)
4
=
mp[
a21
+a1(am+ap)+amap]
4

(class="stub"m+p
2
)
2
[
a21
+2a1ak+(
am+ap
2
)
2
]
4
=
k2(
a21
+2a1ak+
a2k
)
4
=
k2(a1+ak)2
4
=(
Sk
2
)2

class="stub"1
Sm
+class="stub"1
Sp
=
Sm+Sp
SmSp
2Sk
(
Sk
2
)
2
=class="stub"2
Sk

故原不等式得证.

更多内容推荐