若{an}是各项均不为零的等差数列,公差为d,Sn为其前n项和,且满足a2n=S2n-1,n∈N*.数列{bn}满足bn=1an•an+1,Tn为数列{bn}的前n项和.(Ⅰ)求an和Tn;(Ⅱ)若对

题目简介

若{an}是各项均不为零的等差数列,公差为d,Sn为其前n项和,且满足a2n=S2n-1,n∈N*.数列{bn}满足bn=1an•an+1,Tn为数列{bn}的前n项和.(Ⅰ)求an和Tn;(Ⅱ)若对

题目详情

若{an}是各项均不为零的等差数列,公差为d,Sn为其前n项和,且满足
a2n
=S2n-1
,n∈N*.数列{bn}满足bn=
1
anan+1
,Tn为数列{bn}的前n项和.
(Ⅰ)求an和Tn
(Ⅱ)若对一切正整数n,Tn≥λ•(
1
2
)n
恒成立,求λ的取值范围.
题型:解答题难度:中档来源:不详

答案

(Ⅰ)在
a2n
=S2n-1
中,
令n=1,可得a12=s1=a1,
n=2,可得a22=s3=a1+a2+a3,
∴a1=1,a22=a1+a2+a3,a1=1,
a1+a1+d+a1+2d=(a1+d)2,
解得,d=2,
从而an=a1+(n-1)×d=2n-1,…(4分)
bn=class="stub"1
2
(class="stub"1
2n-1
-class="stub"1
2n+1
)

于是Tn=class="stub"1
2
[(1-class="stub"1
3
)+(class="stub"1
3
-class="stub"1
5
)+…+(class="stub"1
2n-1
-class="stub"1
2n+1
)]=class="stub"n
2n+1
.…(8分)
(Ⅱ)λ≤class="stub"n
2n+1
2n

cn=class="stub"n
2n+1
2n

cn+1-cn=class="stub"n+1
2n+3
2n+1-class="stub"n
2n+1
2n

=
2n2+3n+2
(2n+1)(2n+3)
2n>0
,…(12分)
于是{cn}是单调递增数列,(cn)min=c1=class="stub"2
3

λ≤class="stub"2
3
.…(14分)

更多内容推荐