已知数列{an}满足:a1=1,a2=a(a>0).数列{bn}满足bn=anan+1(n∈N*).(1)若{an}是等差数列,且b3=12,求a的值及{an}的通项公式;(2)若{an}是等比数列,

题目简介

已知数列{an}满足:a1=1,a2=a(a>0).数列{bn}满足bn=anan+1(n∈N*).(1)若{an}是等差数列,且b3=12,求a的值及{an}的通项公式;(2)若{an}是等比数列,

题目详情

已知数列{an}满足:a1=1,a2=a(a>0).数列{bn}满足bn=anan+1(n∈N*).
(1)若{an}是等差数列,且b3=12,求a的值及{an}的通项公式;
(2)若{an}是等比数列,求{bn}的前项和Sn
题型:解答题难度:中档来源:苏州一模

答案

(1)∵{an}是等差数列,a1=1,a2=a(a>0),∴an=1+(n-1)(a-1).
又b3=12,∴a3a4=12,即(2a-1)(3a-2)=12,
解得a=2或a=-class="stub"5
6

∵a>0,∴a=2从而an=n.
(2)∵{an}是等比数列,a1=1,a2=a(a>0),∴an=an-1,则bn=anan+1=a2n-1.
bn+1
bn
=a2∴数列{bn}是首项为a,公比为a2的等比数列,
当a=1时,Sn=n;
当a≠1时,Sn=
a(1-a2n)
1-a2
=
a2n+1-a
a2-1

更多内容推荐