已知首项为32的等比数列{an}的前n项和为Sn(n∈N*),且-2S2,S3,4S4成等差数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)证明Sn+1Sn≤136(n∈N*).-数学

题目简介

已知首项为32的等比数列{an}的前n项和为Sn(n∈N*),且-2S2,S3,4S4成等差数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)证明Sn+1Sn≤136(n∈N*).-数学

题目详情

已知首项为
3
2
的等比数列{an}的前n项和为Sn(n∈N*),且-2S2,S3,4S4成等差数列.
(Ⅰ) 求数列{an}的通项公式;
(Ⅱ) 证明Sn+
1
Sn
13
6
(n∈N*)
题型:解答题难度:中档来源:天津

答案

(Ⅰ)设等比数列{an}的公比为q,
∵-2S2,S3,4S4等差数列,
∴2S3=-2S2+4S4,即S4-S3=S2-S4,
得2a4=-a3,∴q=-class="stub"1
2

a1=class="stub"3
2
,∴an=class="stub"3
2
(-class="stub"1
2
)
n-1
=(-1)n-1•class="stub"3
2n

(Ⅱ)证明:由(Ⅰ)得,Sn=
class="stub"3
2
[1-(-class="stub"1
2
)n]
1+class="stub"1
2
=1-(-class="stub"1
2
)
n

Sn+class="stub"1
Sn
=1-(-class="stub"1
2
)
n
+class="stub"1
1-(-class="stub"1
2
)
n

当n为奇数时,Sn+class="stub"1
Sn
=1+(class="stub"1
2
)
n
+class="stub"1
1+(class="stub"1
2
)
n
=1+class="stub"1
2n
+
2n
1+2n
=2+class="stub"1
2n(2n+1)

当n为偶数时,Sn+class="stub"1
Sn
=1-(class="stub"1
2
)
n
+class="stub"1
1-(class="stub"1
2
)
n
=2+class="stub"1
2n(2n-1)

Sn+class="stub"1
Sn
随着n的增大而减小,
Sn+class="stub"1
Sn
S1+class="stub"1
S1
=class="stub"13
6
,且Sn+class="stub"1
Sn
S2+class="stub"1
S2
=class="stub"25
12

综上,有Sn+class="stub"1
Sn
≤class="stub"13
6
(n∈N*)
成立.

更多内容推荐