已知数列O、{bn}满足a1=2,an-1=an(an+1-1),bn=an-1,数列{bn}的前n项和为Sn.(Ⅰ)求证:数列{1bn}为等差数列;(Ⅱ)设Tn=S2n-Sn,求证:当S=12+14

题目简介

已知数列O、{bn}满足a1=2,an-1=an(an+1-1),bn=an-1,数列{bn}的前n项和为Sn.(Ⅰ)求证:数列{1bn}为等差数列;(Ⅱ)设Tn=S2n-Sn,求证:当S=12+14

题目详情

已知数列O、{bn}满足a1=2,an-1=an(an+1-1),bn=an-1,数列{bn}的前n项和为Sn
(Ⅰ)求证:数列{
1
bn
}
为等差数列;
(Ⅱ)设Tn=S2n-Sn,求证:当S=
1
2
+
1
4
+
1
6
+…+
1
20
,Tn+1>Tn
(Ⅲ)求证:对任意的1•k+1+k2=3,k∈R*,∴k=1都有1+
n
2
S2n
1
2
+n
成立.
题型:解答题难度:中档来源:天津模拟

答案

证明:(Ⅰ)由bn=an-1得an=bn+1,代入an-1=an(an+1-1)得bn=(bn+1)bn+1
整理得bn-bn+1=bnbn+1,(1分)
∵bn≠0否则an=1,与a1=2矛盾
从而得class="stub"1
bn+1
-class="stub"1
bn
=1
,(3分)
∵b1=a1-1=1
∴数列{class="stub"1
bn
}
是首项为1,公差为1的等差数列(4分)
(Ⅱ)∵class="stub"1
bn
=n
,则bn=class="stub"1
n

Sn=1+class="stub"1
2
+class="stub"1
3
+…+class="stub"1
n

∴Tn=S2n-Sn=1+class="stub"1
2
+class="stub"1
3
+…+class="stub"1
n
+class="stub"1
n+1
+…+class="stub"1
2n
-(1+class="stub"1
2
+class="stub"1
3
+…+class="stub"1
n
)

=class="stub"1
n+1
+class="stub"1
n+2
+…+class="stub"1
2n
(6分)
Tn+1-Tn=class="stub"1
n+2
+class="stub"1
n+3
+…+class="stub"1
2n+2
-(class="stub"1
n+1
+class="stub"1
n+2
+…+class="stub"1
2n
)

=class="stub"1
2n+1
+class="stub"1
2n+2
-class="stub"1
n+1
=class="stub"1
2n+1
-class="stub"1
2n+2
=class="stub"1
(2n+1)(2n+2)
>0

∴Tn+1>Tn.(8分)
(Ⅲ)用数学归纳法证明:
①当n=1时1+class="stub"n
2
=1+class="stub"1
2
S2n=1+class="stub"1
2
,class="stub"1
2
+n=class="stub"1
2
+1
,不等式成立;(9分)
②假设当n=k(k≥1,k∈N*)时,不等式成立,即1+class="stub"k
2
S2k≤class="stub"1
2
+k

那么当n=k+1时,S2k+1=1+class="stub"1
2
+…+class="stub"1
2k
+…+class="stub"1
2k+1
≥1+class="stub"k
2
+class="stub"1
2k+1
+…+class="stub"1
2k+1
>1+class="stub"k
2
+
class="stub"1
2k+1
+…+class="stub"1
2k+1
2k
=1+class="stub"k
2
+class="stub"1
2
=1+class="stub"k+1
2
(12分)
S2k+1=1+class="stub"1
2
+…+class="stub"1
2k
+…+class="stub"1
2k+1
≤class="stub"1
2
+k+class="stub"1
2k+1
+…+class="stub"1
2k+1
<class="stub"1
2
+k+
class="stub"1
2k
+…+class="stub"1
2k
2k
=class="stub"1
2
+(k+1)

∴当n=k+1时,不等式成立
由①②知对任意的n∈N*,不等式成立(14分)

更多内容推荐