已知数列{an}满足a1=2,a2=1,且an-1-ananan-1=an-an+1anan+1(n≥2),bn=2nan.(1)证明:1an-1an-1=12;(2)求数列{bn}的前n项和Sn.-

题目简介

已知数列{an}满足a1=2,a2=1,且an-1-ananan-1=an-an+1anan+1(n≥2),bn=2nan.(1)证明:1an-1an-1=12;(2)求数列{bn}的前n项和Sn.-

题目详情

已知数列{an}满足a1=2,a2=1,且
an-1-an
anan-1
=
an-an+1
anan+1
(n≥2)
bn=
2n
an

(1)证明:
1
an
-
1
an-1
=
1
2

(2)求数列{bn}的前n项和Sn
题型:解答题难度:中档来源:不详

答案

(1)∵
an-1-an
anan-1
=
an-an+1
anan+1
(n≥2)

∴数列{
an-1-an
anan-1
}为常数列
an-1-an
anan-1
=class="stub"1
an
-class="stub"1
an-1
=
a1-a2
a2a1
=class="stub"1
2
  (n≥2)
class="stub"1
an
-class="stub"1
an-1
=class="stub"1
2

(2)由(1)知{class="stub"1
an
}
是以class="stub"1
2
为首项,class="stub"1
2
为公差的等差数列,
class="stub"1
an
=class="stub"n
2

bn=
2n
an
=n×2n-1

∴Sn=1×20+2×21+3×22+…+n×2n-1,
2Sn=1×21+2×22+…+(n-1)×2n-1+n×2n,
-Sn=1+21+22+…+2n-1-n×2n=
1-2n
1-2
-n×2n=(1-n)2n-1

∴Sn=(n-1)2n+1.

更多内容推荐