已知公差大于零的等差数列an的前n项和为Sn,且满足:a3•a4=117,a2+a5=22.(1)求数列an的通项公式an;(2)若数列bn是等差数列,且bn=Snn+c,求非零常数c;(3)若(2)

题目简介

已知公差大于零的等差数列an的前n项和为Sn,且满足:a3•a4=117,a2+a5=22.(1)求数列an的通项公式an;(2)若数列bn是等差数列,且bn=Snn+c,求非零常数c;(3)若(2)

题目详情

已知公差大于零的等差数列an的前n项和为Sn,且满足:a3•a4=117,a2+a5=22.
(1)求数列an的通项公式an
(2)若数列bn是等差数列,且bn=
Sn
n+c
,求非零常数c;
(3)若(2)中的bn的前n项和为Tn,求证:2Tn-3bn-1
64bn
(n+9)bn+1
题型:解答题难度:中档来源:烟台二模

答案

(1)an为等差数列,a3•a4=117,a2+a5=22
又a2+a5=a3+a4=22
∴a3,a4是方程x2-22x+117=0的两个根,d>0
∴a3=9,a4=13
a1+2d=9
a1+3d=13

∴d=4,a1=1
∴an=1+(n-1)×4=4n-3
(2)由(1)知,sn=n+
n(n-1)×4
2
=2n2-n

bn=
sn
n+c
=
2n2-n
c+n

b1=class="stub"1
1+c
b2=class="stub"6
2+c
b3=class="stub"15
3+c

∵bn是等差数列,∴2b2=b1+b3,∴2c2+c=0,
c=-class="stub"1
2
(c=0舍去),
(3)由(2)得bn=
2n2-n
n-class="stub"1
2
=2n
Tn=2n+
n(n-1)×2
2
=n2+n=(n+1)n

2Tn-3bn-1=2(n2+n)-3(2n-2)=2(n-1)2+4≥4,
但由于n=1时取等号,从而等号取不到2Tn-3bn-1=2(n2+n)-3(2n-2)=2(n-1)2+4>4,

64bn
(n+9)bn+1
=class="stub"64×2n
(n+9)•2(n+1)
=class="stub"64n
n2+10n+9
=class="stub"64
n+class="stub"9
n
+10
≤4

n=3时取等号(15分)
(1)、(2)式中等号不能同时取到,所以2Tn-3bn-1
64bn
(n+9)bn+1

更多内容推荐