已知数列{an}满足a1=1,an+1=2an+1(n∈N*).(I)求数列{an}的通项公式;(II)若数列{bn}滿足4b1-14b2-1…4bn-1=(an+1)bn(n∈N*),证明:数列{b

题目简介

已知数列{an}满足a1=1,an+1=2an+1(n∈N*).(I)求数列{an}的通项公式;(II)若数列{bn}滿足4b1-14b2-1…4bn-1=(an+1)bn(n∈N*),证明:数列{b

题目详情

已知数列{an}满足a1=1,an+1=2an+1(n∈N*).
(I)求数列{an}的通项公式;
(II)若数列{bn}滿足4b1-14b2-14bn-1=(an+1)bn(n∈N*),证明:数列{bn}是等差数列;
(Ⅲ)证明:
n
2
-
1
3
a1
a2
+
a2
a3
+…+
an
an+1
n
2
(n∈N*)
题型:解答题难度:中档来源:福建

答案

(I)∵an+1=2an+1(n∈N*),
∴an+1+1=2(an+1),
∴{an+1}是以a1+1=2为首项,2为公比的等比数列.
∴an+1=2n.
即an=2n-1∈N*).
(II)证明:∵4b1-14b2-14bn-1=(an+1)bn(n∈N*)
4(b1+b2+…+bn)-n=2nbn
∴2[(b1+b2+…+bn)-n]=nbn,①
2[(b1+b2+…+bn+bn+1)-(n+1)]=(n+1)bn+1.②
②-①,得2(bn+1-1)=(n+1)bn+1-nbn,
即(n-1)bn+1-nbn+2=0,nbn+2-(n+1)bn+1+2=0.
③-④,得nbn+2-2nbn+1+nbn=0,
即bn+2-2bn+1+bn=0,
∴bn+2-bn+1=bn+1-bn(n∈N*),
∴{bn}是等差数列.
(III)证明:∵
ak
ak+1
=
2k-1
2k+1-1
=
2k-1
2(2k-class="stub"1
2
)
<class="stub"1
2
,k=1,2,,n,
a1
a2
+
a2
a3
++
an
an+1
<class="stub"n
2

ak
ak+1
=
2k-1
2k+1-1
=class="stub"1
2
-class="stub"1
2(2k+1-1)
=class="stub"1
2
-class="stub"1
3.2k+2k-2
≥class="stub"1
2
-class="stub"1
3
.class="stub"1
2k
,k=1,2,,n,
a1
a2
+
a2
a3
++
an
an+1
≥class="stub"n
2
-class="stub"1
3
(class="stub"1
2
+class="stub"1
22
++class="stub"1
2n
)=class="stub"n
2
-class="stub"1
3
(1-class="stub"1
2n
)>class="stub"n
2
-class="stub"1
3

class="stub"n
2
-class="stub"1
3
a1
a2
+
a2
a3
++
an
an+1
<class="stub"n
2
(n∈N*)

更多内容推荐