设等比数列{an}的首项a1=256,前n项和为Sn,且Sn,Sn+2,Sn+1成等差数列.(Ⅰ)求{an}的公比q;(Ⅱ)用Πn表示{an}的前n项之积,即Πn=a1•a2…an,试比较Π7、Π8、

题目简介

设等比数列{an}的首项a1=256,前n项和为Sn,且Sn,Sn+2,Sn+1成等差数列.(Ⅰ)求{an}的公比q;(Ⅱ)用Πn表示{an}的前n项之积,即Πn=a1•a2…an,试比较Π7、Π8、

题目详情

设等比数列{an}的首项a1=256,前n项和为Sn,且Sn,Sn+2,Sn+1成等差数列.
(Ⅰ)求{an}的公比q;
(Ⅱ)用Πn表示{an}的前n项之积,即Πn=a1•a2…an,试比较Π7、Π8、Π9的大小.
题型:解答题难度:中档来源:深圳二模

答案

(Ⅰ)解法一:∵Sn+1=Sn+an+1,Sn+2=Sn+an+1+an+2,
由已知2Sn+2=Sn+Sn+1,…(4分)
得:2(Sn+an+1+an+2)=Sn+(Sn+an+1),∴an+2=-class="stub"1
2
an+1
,∴{an}的公比q=-class="stub"1
2
.…(8分)
解法二:由已知2Sn+2=Sn+Sn+1,…(2分)
当q=1时,Sn+2=(n+2)a1,Sn+1=(n+1)a1,Sn=na1,
则2(n+2)a1=(n+1)a1+na1,⇒a1=0与{an}为等比数列矛盾;  …(4分)
当q≠1时,则2•
a1(1-qn+2)
1-q
=
a1(1-qn)
1-q
+
a1(1-qn+1)
1-q

化简得:2qn+2=qn+qn+1,∵qn≠0,∴2q2=1+q,∴q=-class="stub"1
2
…(8分)
(Ⅱ)∵a1=28, q=-class="stub"1
2
,则有:a2=-27,a3=26,a4=-25,a5=24,a6=-23,a7=22,a8=-2,a9=1,…∴Π7<0…(11分)Π8=Π9>0…(13分)∴Π7<Π8=Π9…(14分)

更多内容推荐