已知Sn是数列{an}的前n项和,点(n,Snn)(n∈N*)均在函数y=3x-2的图象上.(1)求数列{an}的通项公式;(2)若bn+1-bn=2an,且b1=-1,求数列{bn}的通项公式.-数

题目简介

已知Sn是数列{an}的前n项和,点(n,Snn)(n∈N*)均在函数y=3x-2的图象上.(1)求数列{an}的通项公式;(2)若bn+1-bn=2an,且b1=-1,求数列{bn}的通项公式.-数

题目详情

已知Sn是数列{an}的前n项和,点(n,
Sn
n
)(n∈N*)
均在函数y=3x-2的图象上.
(1)求数列{an}的通项公式;
(2)若bn+1-bn=2an,且b1=-1,求数列{bn}的通项公式.
题型:解答题难度:中档来源:不详

答案

(1)由题意知,
Sn
n
=3n-2,即Sn=3n2-2n
当n=1时a1=S1=1
当n≥2时,an=Sn-Sn-1=(3n2-2n)-[3(n-1)2-2(n-1)]=6n-5,且对于n=1时也适合,所以an=6n-5
(2)∵bn+1-bn=2an=2(6n-5)
∴b2-b1=2×1
b3-b2=2×7
b4-b3=2×13

bn-bn-1=2(6n-11)(n≥2)
bn-b1=2×
(n-1)(16n-11)
2
=6n2-16n+10
bn=6n2-16n+9  (n≥2),又b1=-1,
综上所述,an=
-1     n=1
6n2-16n+9

更多内容推荐