已知点G是△ABC的重心,A(0,-1),B(0,1).在x轴上有一点M,满足|MA|=|MC|,GM=λAB(λ∈R)(若△ABC的顶点坐标为A(x1,y1),B(x2,y2),C(x3,y3),则

题目简介

已知点G是△ABC的重心,A(0,-1),B(0,1).在x轴上有一点M,满足|MA|=|MC|,GM=λAB(λ∈R)(若△ABC的顶点坐标为A(x1,y1),B(x2,y2),C(x3,y3),则

题目详情

已知点G是△ABC的重心,A(0,-1),B(0,1).在x轴上有一点M,满足|
MA
|=|
MC
|
GM
AB
(λ∈R)
(若△ABC的顶点坐标为A(x1,y1),B(x2,y2),C(x3,y3),则该三角形的重心坐标为G(
x1+x2+x3
3
y1+y2+y3
3
)
).
(1)求点C的轨迹E的方程.
(2)设(1)中曲线E的左、右焦点分别为F1、F2,过点F2的直线l交曲线E于P、Q两点,求△F1PQ面积的最大值,并求出取最大值时直线l的方程.
题型:解答题难度:中档来源:青州市模拟

答案

(1)设C(x,y),则G(class="stub"x
3
,class="stub"y
3
)

GM
AB
(λ∈R),∴GMAB.又M是x轴上一点,则M(class="stub"x
3
,0)

又∵|
MA
|=|
MC
|
,∴
(class="stub"x
3
)
2
+(0+1)2
=
(class="stub"x
3
-x)
2
+y2
.整理得
x2
3
+y2=1(x≠0)


(2)由(1),知F1(-
2
,0),F2(
2
,0)
.设直线l的方程为x=ty+
2

由(1),知x≠0,∴l不过点(0,±1),∴t≠±
2

设P(x1,y1),Q(x2,y2),将x=ty+
2
代入x2+3y2=3,(t2+3)y2+2
2
ty-1=0

∴△=8t2+4(t2+3)=12(t2+1)>0恒成立.∴y1+y2=
-2
2
t
t2+3
y1y2=-class="stub"1
t2+3

|y1-y2|=
(y1+y2)2-4y1y2
=
12(t2+1)
(t2+3)2
=
2
3
t2+1
t2+3

SF1PQ=class="stub"1
2
|F1F2|•|y1-y2|=
2
|y1-y2|=2
6
t2+1
t2+3
(t≠±
2
)

SF1PQ=
2
6
t2+1
+class="stub"2
t2+1
2
6
2
2
=
3

当且仅当t2+1=2,即t=±1时取“=”
所以△F1PQ的最大值为
3
,此时直线l的方程为x±y-
2
=0.

更多内容推荐