已知向量a=(cosx,sinx),b=(2cosx2,-2sinx2),且x∈(-π9,2π9].求:(1)a•b和|a-b|的取值范围;(2)函数f(x)=a•b-|a-b|的最小值.-数学

题目简介

已知向量a=(cosx,sinx),b=(2cosx2,-2sinx2),且x∈(-π9,2π9].求:(1)a•b和|a-b|的取值范围;(2)函数f(x)=a•b-|a-b|的最小值.-数学

题目详情

已知向量
a
=(cosx,sinx),
b
=(2cos
x
2
,-2sin
x
2
)
,且x∈(-
π
9
9
]

求:(1)
a
b
和|
a
-
b
|的取值范围;
(2)函数f(x)=
a
b
-|
a
-
b
|的最小值.
题型:解答题难度:中档来源:不详

答案

(1)∵
a
=(cosx,sinx),
b
=(2cosclass="stub"x
2
,-2sinclass="stub"x
2
)

∴a•b=cosx•2cosclass="stub"x
2
+sinx•(-sinclass="stub"x
2
)=2(cosx•cosclass="stub"x
2
-sinx•sinclass="stub"x
2
)=2cosclass="stub"3x
2

又∵x∈(-class="stub"π
9
,class="stub"2π
9
]

class="stub"3x
2
∈(-class="stub"π
6
,class="stub"π
3
]⇒cosclass="stub"3x
2
∈[class="stub"1
2
,1]

2cosclass="stub"3x
2
∈[1,2]
a
b
∈[1,2]
|a-b|=
|a-b|2
=
(a-b)2
=
a2-2a•b+b2

=
(cos2x+sin2x)+(4cos2class="stub"x
2
+4sin2class="stub"x
2
)-2•2cosclass="stub"3x
2

=
1+4-4cosclass="stub"3x
2
=
5-4cosclass="stub"3x
2

又∵cosclass="stub"3x
2
∈[class="stub"1
2
,1]
-4cosclass="stub"3x
2
∈[-4,-2]

5-4cosclass="stub"3x
2
∈[1,
3
]

(2)由(1)知:f(x)=
a
b
-|
a
-
b
|=2cosclass="stub"3x
2
-
5-4cosclass="stub"3x
2

5-4cosclass="stub"3x
2
=t
,则t2=5-4cosclass="stub"3x
2
2cosclass="stub"3x
2
=
5-t2
2

f(x)=
5-t2
2
-t=-class="stub"1
2
t2-t+class="stub"5
2
=-class="stub"1
2
(t2+2t+1)+class="stub"5
2
+class="stub"1
2
=-class="stub"1
2
(t+1)2+3
(t∈[1,
3
])

∴由图象可知:当t=
3
时,函数f(x)取得最小值f(x)min=-class="stub"1
2
(
3
+1)2+3=1-
3

更多内容推荐