设奇函数f(x)在(0,+∞)上是增函数,且f(1)=0,则不等式x[f(x)-f(-x)]<0的解集为()A.{x|-1<x<0,或>1}B.{x|x<-1,或0<x<1}C.{x|x<-1,或x>

题目简介

设奇函数f(x)在(0,+∞)上是增函数,且f(1)=0,则不等式x[f(x)-f(-x)]<0的解集为()A.{x|-1<x<0,或>1}B.{x|x<-1,或0<x<1}C.{x|x<-1,或x>

题目详情

设奇函数f(x)在(0,+∞)上是增函数,且f(1)=0,则不等式x[f(x)-f(-x)]<0的解集为(  )
A.{x|-1<x<0,或>1}B.{x|x<-1,或0<x<1}
C.{x|x<-1,或x>1}D.{x|-1<x<0,或0<x<1}
题型:单选题难度:偏易来源:不详

答案

∵函数f(x)是奇函数,函数f(x)在(0,+∞)上是增函数,
∴它在(-∞,0)上也是增函数.∵f(-x)=-f(x),
∴f(-1)=f(1)=0.
不等式x[f(x)-f(-x)]<0可化为2xf(x)<0,
即xf(x)<0,
∴当x<0时,
可得f(x)>0=f(-1),∴x>-1,
∴-1<x<0;
当x>0时,可得f(x)<0=f(1),
∴x<1,∴0<x<1.
综上,不等式x[f(x)-f(-x)]<0的解集为{x|-1<x0,或0<x<1}.
故选D.

更多内容推荐