设f(k)是满足不等式log2x+log2(3•2k-1-x)≥2K-1,(k∈N)的自然数x的个数,(1)求f(x)的解析式;(2)记Sn=f(1)+f(2)+…+f(n),求Sn解析式;(3)记P

题目简介

设f(k)是满足不等式log2x+log2(3•2k-1-x)≥2K-1,(k∈N)的自然数x的个数,(1)求f(x)的解析式;(2)记Sn=f(1)+f(2)+…+f(n),求Sn解析式;(3)记P

题目详情

设f(k)是满足不等式log2x+log2(3•2k-1-x)≥2K-1,(k∈N)的自然数x的个数,
(1)求f(x)的解析式;
(2)记Sn=f(1)+f(2)+…+f(n),求Sn解析式;
(3)记Pn=n-1,设Tn=
log2(Sn-Pn)
log2(Sn+1-Pn+1)-10.5
,对任意n∈N均有Tn<m成立,求出整数m的最小值.
题型:解答题难度:中档来源:不详

答案

(1)原不等式可转化为:
x>0
3•2k-1-x>0
x(3•2k-1-x)≥22k-1

x>0
x<3•2k-1
x2-3•2k-1x+2k-12k≤0

∴2k-1≤x≤2k(4分)
∴f(k)=2k-(2k-1-1)=2k-1+1.(6′)
(2)∵Sn=f(1)+f(2)+…+f(n)
=20+21+…+2n-1+n
=2n+n-1.(10′)
(3)∵Tn=
log22n
log22n+1-10.5
=class="stub"n
n-9.5
=1+class="stub"9.5
n-9.5
,(12′)
当1≤n≤9时,Tn单调递减,此时(Tn)max=T1=-class="stub"2
17
,(14′)
当n≥10时,Tn单调递减,此时(Tn)max=T10=20,
∴(Tn)max=20,mmin=21.(16′)

更多内容推荐