已知定义在实数集R上的函数f(x)满足f(1)=2,且f(x)的导数f'(x)在R上恒有f'(x)<1(x∈R),则不等式f(x)<x+1的解集为()A.(1,+∞)B.(-∞,-

题目简介

已知定义在实数集R上的函数f(x)满足f(1)=2,且f(x)的导数f'(x)在R上恒有f'(x)<1(x∈R),则不等式f(x)<x+1的解集为()A.(1,+∞)B.(-∞,-

题目详情

已知定义在实数集R上的函数f(x)满足f(1)=2,且f(x)的导数f'(x)在R上恒有f'(x)<1(x∈R),则不等式f(x)<x+1的解集为(  )
A.(1,+∞)B.(-∞,-1)C.(-1,1)D.(-∞,-1)∪(1,+∞)
题型:单选题难度:偏易来源:不详

答案

令g(x)=f(x)-x-1,
∵f′(x)<1(x∈R),
∴g′(x)=f′(x)-1<0,
∴g(x)=f(x)-x-1为减函数,
又f(1)=2,
∴g(1)=f(1)-1-1=0,
∴不等式f(x)<x+1的解集⇔g(x)=f(x)-x-1<0=g(1)的解集,
即g(x)<g(1),又g(x)=f(x)-x-1为减函数,
∴x>1,即x∈(1,+∞).
故选A.

更多内容推荐