已知定义域为R的函数f(x)=1-2x2x+1+a是奇函数.(1)求a的值;(2)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范围.-数学

题目简介

已知定义域为R的函数f(x)=1-2x2x+1+a是奇函数.(1)求a的值;(2)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范围.-数学

题目详情

已知定义域为R的函数f(x)=
1-2x
2x+1+a
是奇函数.
(1)求a的值;
(2)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范围.
题型:解答题难度:中档来源:不详

答案

(1)由f(x)是奇函数得,f(1)=-f(-1),
class="stub"1-2
4+a
=-
1-class="stub"1
2
1+a
,解得a=2,
(2)∵f(t2-2t)+f(2t2-k)<0,
∴f(t2-2t)<-f(2t2-k),
∵f(x)为奇函数,
∴f(t2-2t)<f(-2t2+k)
由(1)得,
 f(x)=
1-2x
2x+1+2
=
-(2x+1)+2
2(2x+1)
=-class="stub"1
2
+class="stub"1
2x+1

∴f(x)在定义域内为单调递减函数,
∴t2-2t>-2t2+k,即3t2-2t-k>0恒成立,
∴△=4+12k<0,解得k<-class="stub"1
3

故k的取值范围是(-∞,-class="stub"1
3
)

更多内容推荐