已知函数f(x)=ax2-3ax+1(a∈R)(1)若f(-1)•f(2)<0,求a的取值范围;(2)若对一切实数x,f(x)>0恒成立,求a的取值范围.-数学

题目简介

已知函数f(x)=ax2-3ax+1(a∈R)(1)若f(-1)•f(2)<0,求a的取值范围;(2)若对一切实数x,f(x)>0恒成立,求a的取值范围.-数学

题目详情

已知函数f(x)=ax2-3ax+1(a∈R)
(1)若f(-1)•f(2)<0,求a的取值范围;
(2)若对一切实数x,f(x)>0恒成立,求a的取值范围.
题型:解答题难度:中档来源:不详

答案

(1)函数函数f(x)=ax2-3ax+1(a∈R),有f(-1)•f(2)<0,
即(4a+1)(-2a+1)<0亦即(4a+1)(2a-1)>0
解得a<-class="stub"1
4
或a>class="stub"1
2
,故a的取值范围为:a<-class="stub"1
4
或a>class="stub"1
2

(2)当a=0时,不等式即1>0,满足条件.
当a≠0时,要使不等式ax2-3ax+1>0对一切x∈R恒成立,
a>0 
△=9a2-4a<0
,解得 0<a<class="stub"4
9

综上可得,实数a的取值范围是[0,class="stub"4
9

更多内容推荐