(文科做)已知等差数列{an}{和正项等比数列{bn},a1=b1=1,a3=b3=2.(1)求an,bn;(2)设cn=an•bn2,求数列{cn}的前n项和Sn;(3)设{an}的前n项和为Tn,

题目简介

(文科做)已知等差数列{an}{和正项等比数列{bn},a1=b1=1,a3=b3=2.(1)求an,bn;(2)设cn=an•bn2,求数列{cn}的前n项和Sn;(3)设{an}的前n项和为Tn,

题目详情

(文科做)已知等差数列{an}{和正项等比数列{bn},a1=b1=1,a3=b3=2.
(1)求an,bn
(2)设cn=anbn2,求数列{cn}的前n项和Sn
(3)设{an}的前n项和为Tn,是否存在常数P、c,使an=p+log2(Tn+c)恒成立?若存在,求P、c的值;若不存在,说明理由.
题型:解答题难度:中档来源:不详

答案

(1)由a3=a1+2d,得d=class="stub"1
2
-------(1分)
由b3=b1q2且q>0得q=
2
----(2分)
所以an=a1+(n-1)d=class="stub"n+1
2
,bn=b1qn-1=2class="stub"n-1
2
-------(4分)
(2)因为cn=(n+1)2n-2--------------------------(5分)
Sn=2•2-1+3•20+4•21+…+(n+1)•2n-2-----------------①
2Sn=2•20+3•21+4•22+…+n•2n-2+(n+1)•2n-1---------------------------②
所以①-②得:-Sn=1+1+2+22+…+2n-1-(n+1)•2n-1--------------------------(7分)
所以Sn=n•2n-1--------------------------(9分)
(3)Tn=
b1(1-qn)
1-q
=(
2
+1)(2class="stub"n
2
-1)
-------(10分),
an=p+log2(Tn+c)恒成立,
则当n=1,n=3时,有
1=plog2(1+c)
2=p+log2(1+
2
+2+c)
-----(12分),
解得c=
2
+1
p=log2(2-
2
)
-------(13分)
p+log2(Tn+c)=log2(2-
2
)+log2[(
2
+1)(2class="stub"n
2
-1)+(
2
+1)]
=log2(
2
×2class="stub"n
2
)
=class="stub"n+1
2
------(15分)
所以,当c=
2
+1
p=log2(2-
2
)
时,an=p+log2(Tn+c)恒成立-------(16分)

更多内容推荐