如图,已知A、B是单位圆O上的点,C是圆与x轴正半轴的交点,点A的坐标为(35,45),点B在第二象限,且△AOB为正三角形.(Ⅰ)求sin∠COA;(Ⅱ)求△BOC的面积.-数学

题目简介

如图,已知A、B是单位圆O上的点,C是圆与x轴正半轴的交点,点A的坐标为(35,45),点B在第二象限,且△AOB为正三角形.(Ⅰ)求sin∠COA;(Ⅱ)求△BOC的面积.-数学

题目详情

如图,已知A、B是单位圆O上的点,C是圆与x轴正半轴的交点,点A的坐标为(
3
5
4
5
)
,点B在第二象限,且△AOB为正三角形.
(Ⅰ)求sin∠COA;     
(Ⅱ)求△BOC的面积.360优课网
题型:解答题难度:中档来源:不详

答案

(I)由三角函数在单位圆中的定义可以知道,
当一个角的终边与单位圆的交点是(class="stub"3
5
,class="stub"4
5
)

∴sin∠COA=class="stub"4
5

(II)∵∠BOC=∠BOA+∠AOC,
∴sin∠BOC=
3
2
×class="stub"4
5
+class="stub"1
2
×class="stub"3
5
=
4
3
+3
10

∴三角形的面积是class="stub"1
2
×1×1×
4
3
+3
10
=
3+4
3
20

更多内容推荐