已知向量a=(sinx,-1),b=(3cosx,-12),函数f(x)=(a+b)•a-2(1)求函数f(x)的最小正周期T及单调减区间;(2)已知a,b,c分别为△ABC内角A,B,C的对边,其中

题目简介

已知向量a=(sinx,-1),b=(3cosx,-12),函数f(x)=(a+b)•a-2(1)求函数f(x)的最小正周期T及单调减区间;(2)已知a,b,c分别为△ABC内角A,B,C的对边,其中

题目详情

已知向量
a
=(sinx,-1),
b
=(
3
cosx,-
1
2
),函数f(x)=(
a
+
b
)•
a
-2
(1)求函数f(x)的最小正周期T及单调减区间;
(2)已知a,b,c分别为△ABC内角A,B,C的对边,其中A为锐角,a=2
3
,c=4,且f(A)=1.求A,b和△ABC的面积.
题型:解答题难度:中档来源:不详

答案

解析:(1)∵
a
=(sinx,-1)
b
=(
3
cosx,-class="stub"1
2
)

∴(
a
+
b
a
=(sinx+
3
cosx,-class="stub"3
2
)
•(sinx,-1)
=sin2x+
3
sinxcosx+class="stub"3
2

=class="stub"1-cos2x
2
+
3
sin2x
2
+class="stub"3
2

=sin(2x-class="stub"π
6
)
+2,
f(x)=(
a
+
b
)•
a
-2
=sin(2x-class="stub"π
6
)

T=class="stub"2π
2

class="stub"π
2
+2kπ≤2x-class="stub"π
6
≤class="stub"3π
2
+2kπ

解得kπ+class="stub"π
3
≤x≤kπ+class="stub"5π
6
(k∈Z)

∴单调递减区间是[kπ+class="stub"π
3
,kπ+class="stub"5π
6
](k∈Z)

(2)∵f(A)=1,∴sin(2A-class="stub"π
6
)=1

∵A为锐角,∴2A-class="stub"π
6
=class="stub"π
2
,解得A=class="stub"π
3

由正弦定理得class="stub"a
sinA
=class="stub"c
sinC

sinC=
4×sinclass="stub"π
3
4
3
=sinC=
4sinclass="stub"π
3
2
3
=1,C∈(0,π),∴C=class="stub"π
2

B=π-A-C=class="stub"π
6
,∴b=class="stub"1
2
c
=2.
S△ABC=class="stub"1
2
×2×2
3
=2
3

更多内容推荐