已知函数f(x)=sinx2cosx2+3cos2x2.(1)求方程f(x)=0的解集;(2)如果△ABC的三边a,b,c满足b2=ac,且边b所对的角为x,求角x的取值范围及此时函数f(x)的值域.

题目简介

已知函数f(x)=sinx2cosx2+3cos2x2.(1)求方程f(x)=0的解集;(2)如果△ABC的三边a,b,c满足b2=ac,且边b所对的角为x,求角x的取值范围及此时函数f(x)的值域.

题目详情

已知函数f(x)=sin
x
2
cos
x
2
+
3
cos2
x
2

(1)求方程f(x)=0的解集;
(2)如果△ABC的三边a,b,c满足b2=ac,且边b所对的角为x,求角x的取值范围及此时函数f(x)的值域.
题型:解答题难度:中档来源:嘉定区一模

答案

(1)法1:由f(x)=0,
得sinclass="stub"x
2
cosclass="stub"x
2
+
3
cos2class="stub"x
2
=cosclass="stub"x
2
(sinclass="stub"x
2
+
3
cosclass="stub"x
2
)=0,
由cosclass="stub"x
2
=0,得class="stub"x
2
=kπ+class="stub"π
2

∴x=2kπ+π(k∈Z);
由sinclass="stub"x
2
+
3
cosclass="stub"x
2
=0,得tanclass="stub"x
2
=-
3

class="stub"x
2
=kπ-class="stub"π
3
,即x=2kπ-class="stub"2π
3
(k∈Z),
则方程f(x)=0的解集为{x|2kπ+π或2kπ-class="stub"2π
3
(k∈Z)};
法2:f(x)=class="stub"1
2
sinx+
3
2
(cosx+1)
=class="stub"1
2
sinx+
3
2
cosx+
3
2
=sin(x+class="stub"π
3
)+
3
2

由f(x)=0,得sin(x+class="stub"π
3
)=-
3
2

可得x+class="stub"π
3
=kπ-(-1)kclass="stub"π
3
(k∈Z),即x=kπ-(-1)kclass="stub"π
3
-class="stub"π
3
(k∈Z),
则方程f(x)=0的解集为{x|x=kπ-(-1)kclass="stub"π
3
-class="stub"π
3
(k∈Z)};
(2)∵b2=ac,且a2+c2≥2ac(当且仅当a=c时取等号),
∴由余弦定理得cosB=
a2+c2-b2
2ac
=
a2+c2-ac
2ac
class="stub"1
2

又B为三角形的内角,
∴0<B≤class="stub"π
3

由题意得x=B,即x∈(0,class="stub"π
3
],
f(x)=class="stub"1
2
sinx+
3
2
(cosx+1)
=class="stub"1
2
sinx+
3
2
cosx+
3
2
=sin(x+class="stub"π
3
)+
3
2

∵x+class="stub"π
3
∈(class="stub"π
3
class="stub"2π
3
],
则此时函数f(x)的值域为[
3
3
2
+1].

更多内容推荐