定义在[-5,5]上的单调递减的奇函数f(x)满足f(a+1)+f(1-2a)>0,求实数a的取值范围.-数学

题目简介

定义在[-5,5]上的单调递减的奇函数f(x)满足f(a+1)+f(1-2a)>0,求实数a的取值范围.-数学

题目详情

定义在[-5,5]上的单调递减的奇函数f(x)满足f(a+1)+f(1-2a)>0,求实数a的取值范围.
题型:解答题难度:中档来源:不详

答案

∵函数f(x)为奇函数
∴f(a+1)+f(1-2a)>0可化为f(a+1)>-f(1-2a),即f(a+1)>f(2a-1)
又∵函数f(x)是定义在[-5,5]上的单调递减函数
a+1<2a-1
a+1≥-5
2a-1≤5
,解得2<a≤3
故实数a的取值范围为(2,3]

更多内容推荐