已知不等式mx2-mx-1<0.(1)若对∀x∈R不等式恒成立,求实数m的取值范围;(2)若对∀x∈[1,3]不等式恒成立,求实数m的取值范围;(3)若对满足|m|≤2的一切m的值不等式恒成立,求实数

题目简介

已知不等式mx2-mx-1<0.(1)若对∀x∈R不等式恒成立,求实数m的取值范围;(2)若对∀x∈[1,3]不等式恒成立,求实数m的取值范围;(3)若对满足|m|≤2的一切m的值不等式恒成立,求实数

题目详情

已知不等式mx2-mx-1<0.
(1)若对∀x∈R不等式恒成立,求实数m的取值范围;
(2)若对∀x∈[1,3]不等式恒成立,求实数m的取值范围;
(3)若对满足|m|≤2的一切m的值不等式恒成立,求实数x的取值范围.
题型:解答题难度:中档来源:不详

答案

(1)要使不等式mx2-mx-1<0恒成立,
①若m=0,显然-1<0;
②若m≠0,则
m<0
△=m2+4m<0
,解得-4<m<0,
综上,实数m的取值范围是{m|-4<m≤0}.
(2)令f(x)=mx2-mx-1,
①当m=0时,f(x)=-1<0显然恒成立;
②当m>0时,若对∀x∈[1,3]不等式恒成立,只需
f(1)<0
f(3)<0
即可,
所以
f(1)=-1<0
f(3)=9m-3m-1<0
,解得m<class="stub"1
6

所以0<m<class="stub"1
6

③当m<0时,函数f(x)的图象开口向下,对称轴为x=class="stub"1
2
,若对∀x∈[1,3]不等式恒成立,结合函数图象知只需f(1)<0即可,解得m∈R,所以m<0,
综上所述,实数m的取值范围是{m|m<class="stub"1
6
};
(3)令g(m)=mx2-mx-1=(x2-x)m-1,
若对满足|m|≤2的一切m的值不等式恒成立,则只需
g(-2)<0
g(2)<0
即可,
所以
-2(x2-x)-1<0
2(x2-x)-1<0
,解得
1-
3
2
<x<
1+
3
2

所以实数x的取值范围是{x|
1-
3
2
<x<
1+
3
2
}.

更多内容推荐