已知偶函数f(x)对∀x∈R满足f(2+x)=f(2-x)且当-2≤x≤0时,f(x)=log2(1-x),则f(2011)的值为()A.2011B.2C.1D.0-数学

题目简介

已知偶函数f(x)对∀x∈R满足f(2+x)=f(2-x)且当-2≤x≤0时,f(x)=log2(1-x),则f(2011)的值为()A.2011B.2C.1D.0-数学

题目详情

已知偶函数f(x)对∀x∈R满足f(2+x)=f(2-x)且当-2≤x≤0时,f(x)=log2(1-x),则f(2011)的值为(  )
A.2011B.2C.1D.0
题型:单选题难度:偏易来源:潍坊二模

答案

∵f(2+x)=f(2-x),
∴f(x)=f(4-x)
∵f(x)是偶函数,
∴f(x)=f(4-x)=f(-x)
所以f(x)周期是4.
∴f(2011)=f(-1),
当-2≤x≤0时,f(x)=log2(1-x),
代入-1即可答案为log22=1.
故选C.

更多内容推荐