优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 已知a>0,b>0,函数f(x)=x2+(ab-a-4b)x+ab是偶函数,则f(x)的图象与y轴交点纵坐标的最小值为()A.16B.8C.4D.22-数学
已知a>0,b>0,函数f(x)=x2+(ab-a-4b)x+ab是偶函数,则f(x)的图象与y轴交点纵坐标的最小值为()A.16B.8C.4D.22-数学
题目简介
已知a>0,b>0,函数f(x)=x2+(ab-a-4b)x+ab是偶函数,则f(x)的图象与y轴交点纵坐标的最小值为()A.16B.8C.4D.22-数学
题目详情
已知a>0,b>0,函数f(x)=x
2
+(ab-a-4b)x+ab是偶函数,则f(x)的图象与y轴交点纵坐标的最小值为( )
A.16
B.8
C.4
D.
2
2
题型:单选题
难度:偏易
来源:广东模拟
答案
∵函数f(x)=x2+(ab-a-4b)x+ab是偶函数,∴ab-a-4b=0,
∴ab=a+4b,∵a>0,b>0,∴a+4b≥2
a•4b
=4
ab
,即ab≥4
ab
,
令
ab
=t,∴t2≥4t,t≥4,即
ab
≥4,ab≥16
令函数f(x)=x2+(ab-a-4b)x+ab中x=0,得,f(0)=ab,∴f(x)的图象与y轴交点纵坐标为ab,
∵ab≥4
ab
,∴f(x)的图象与y轴交点纵坐标的最小值为16.
故答案为A
上一篇 :
设f(x)是R上的偶函数,且在(-∞,0)上
下一篇 :
已知f(x)=log2a-2-xx-a的是奇
搜索答案
更多内容推荐
同时具有下列性质:“①对任意x∈R,f(x+π)=f(x)恒成立;②图象关于直线x=π3对称;③函数在[-π6,π3]上是增函数的函数可以是()A..f(x)=sin(x2+π6)B.f(x)=cos
已知函数f(x)=1-1x2.(Ⅰ)证明函数f(x)为偶函数;(Ⅱ)用函数的单调性定义证明f(x)在(0,+∞)上为增函数.-数学
函数f(x)=sin(πx2)ex-1(-1<x<0)(x≥0),若f(1)+f(a)=2,则a的值为:______.-数学
函数f(x)是奇函数,当x>0时,f(x)=x3-cosx,当x<0时,f(x)的表达式为()A.x3+cosxB.-x3+cosxC.-x3-cosxD.x3-cosx-数学
下列函数中,图象关于原点对称的是()A.y=-|sinx|B.y=-xsin|x|C.y=sin(-|x|)D.y=sin|x|-数学
已知f(x)是定义在R上的偶函数,且f(x)在(0,+∞)上是增函数,则()A.f(3)<f(-2)<f(1)B.f(1)<f(-2)<f(3)C.f(-2)<f(1)<f(3)D.f(3)<f(1)
已知函数f(x)=ax2+xe-lnx(其中a为常数,e为自然对数的底数).(1)任取两个不等的正数x1、x2,f(x1)-f(x2)x1-x2<0恒成立,求:a的取值范围;(2)当a>0时,求证:f
某投资商到一开发区投资72万元建起了一座蔬菜加工厂,经营中,第一年支出12万元,以后每年支出增加4万元,从第一年起每年蔬菜销售收入50万元.设f(n)表示前n年的纯利润总和,-数学
定义在R上的函数f(x)满足f(x)=log2(1-x),x≤0f(x-1)-f(x-2),x>0则f(8)的值为()A.-1B.0C.1D.2-数学
已知角α的终边上一点p(x,y),且原点O到点P的距离为r,求m=y2+rxr2的最大与最小值.-数学
设f(x)是定义在R上的奇函数,g(x)与f(x)的图象关于直线x=1对称,若g(x)=a(x-2)-(x-2)3.(1)求f(x)的解析式;(2)当x=1时,f(x)取得极值,证明:对任意x1,x2
已知定义域为R的函数f(x)在(4,+∞)上为减函数,且函数y=f(x)的对称轴为x=4,则()A.f(2)>f(3)B.f(2)>f(5)C.f(3)>f(5)D.f(3)>f(6)-数学
(理科)设函数f(x)的定义域为R,若存在常数M>0,使|f(x)|≤M|x|对一切实数x均成立,则f(x)为β函数.现给出如下4个函数:(1)f(x)=0;f(x)=x2;f(x)=2(sinx+c
若f(x)是偶函数,当x∈[0,+∞)时,f(x)=x-1,则f(x-1)<0的解集是()A.{x|0<x<2}B.{x|-2<x<0}C.{{x|-1<x<0}D.{x|1≤x<2}-数学
已知奇函数f(x)的定义域是R,且f(x)=f(1-x),当0≤x≤12时,f(x)=x-x2.(1)求证:f(x)是周期函数;(2)求函数f(x)在区间[1,2]上的解析式;(3)求函数f(x)的值
已知向量a=(cosx,sinx),b=(2cosx2,-2sinx2),且x∈(-π9,2π9].求:(1)a•b和|a-b|的取值范围;(2)函数f(x)=a•b-|a-b|的最小值.-数学
已知函数f(x)的定义域为R,f(x)在R上是减函数,若f(x)的一个零点为1,则不等式f(2x-1)>0的解集为()A.(12,+∞)B.(-∞,12)C.(1,+∞)D.(-∞,1)-数学
下列函数中是奇函数的为()A.y=x2+cosx,x∈RB.y=|2sinx|,x∈RC.y=tanx2,x≠±π2+kπ(k∈N)D.y=x2sinx,x∈R-数学
定义在R上的奇函数f(x)为减函数,若a+b≤0,给出下列不等式:①f(a)•f(-a)≤0;②f(a)+f(b)≤f(-a)+f(-b);③f(b)•f(-b)≥0;④f(a)+f(b)≥f(-a)
已知函数f(x)是R上的偶函数,满足f(x)=-f(x+1),当x∈[2011,2012]时,f(x)=x-2013,则()A.f(sinπ3)>f(cosπ3)B.f(sin2)>f(cos2)C.
已知y=f(x)的定义域为R,且对任意的实数x,恒有等式2f(x)+f(-x)-3•2sinx=0成立.(1)试求f(x)的解析式;(2)判断f(x)在[-π2,π2]的单调性,并用单调性定义予以证明
给出下列四个函数:①f(x)=lnx,②f(x)=1x,③f(x)=(1π)x,④f(x)=sinx,其中在(0,+∞)是增函数的有()A.0个B.1个C.2个D.3个-数学
若函数y=f(x)满足f′(x)>f(x),则f(2012)与e2012f(0)的大小关系为______.-数学
已知函数f(x)=(2-a)x-a2,(x<1)logax,(x≥1)是R上的增函数,那么实数a的取值范围是()A.(1,2)B.(1,43]C.[43,2)D.(0,1)-数学
奇函数f(x)(x∈R)满足:f(-4)=0,且在区间[0,3]与[3,+∞)上分别递减和递增,则不等式(x2-4)f(x)<0的解集为______.-数学
函数f(k)=|k-1|+|k-2|+…+|k-15|,k∈N+且1≤k≤15(1)分别计算f(2)、f(5)的值;(2)当k为何值时,f(k)取最小值?最小值为多少?-数学
已知不等式xy≤ax2+2y2对于x∈[1,2],y∈[2,3]恒成立,则实数a的取值范围是()A.[-1,2]B.(-∞,1]C.(0,2]D.[-1,+∞)-数学
若函数f(x)=13-x-1+a是奇函数,则实数a的值为()A.12B.-12C.2D.-2-数学
若a>b,则下列不等式中恒成立的是()A.ab>1B.lga>lgbC.2a>2bD.a2>b2-数学
(理)设f(x)是定义在D上的函数,若对任何实数α∈(0,1)以及x1、x2∈D恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2)成立,则称f(x)为定义在D上的下凸函数.(1)试判
已知[x]表示不超过x的最大整数(x∈R),如:[-1.3]=-2,[0.8]=0,[3.4]=3,定义{x}=x-[x],则{20122013}+{201222013}+{201232013}+…+
函数f(x)=ax3-x在R上是减函数,则()A.a≤0B.a<1C.a<2D.a≤13-数学
若函数y=f(x)(f(x)不恒为零)的图象与函数y=-f(x)的图象关于原点对称,则函数y=f(x)()A.是奇函数而不是偶函数B.是偶函数而不是奇函数C.既是奇函数又是偶函数D.既不是奇函数又-数
在自然数集N上定义一个函数y=f(x),已知f(1)+f(2)=5.当x为奇数时,f(x+1)-f(x)=1,当x为偶数时f(x+1)-f(x)=3.(1)求证:f(1),f(3),f(5),…,f(
函数f(x)是奇函数,且在[-1,1]是单调增函数,又f(-1)=-1,则满足f(x)≤t2+2at+1对所有的x∈[-1,1]及a∈[-1,1]都成立的t的范围是______.-数学
f(x)是R上的减函数,并且f(x)的图象经过点A(-1,5)和B(3,-1),则不等式|f(x)-2|<3的解集是______.-数学
已知f(x)=f(x-7),x≥0log5|x|,x<0,则f(2011)等于()A.0B.-1C.2D.1-数学
已知f(x)是R上的单调函数,且对任意的实数a∈R,有f(-a)+f(a)=0恒成立,若f(-3)=2(Ⅰ)试判断f(x)在R上的单调性,并说明理由;(Ⅱ)解关于x的不等式:f(m-xx)+f(m)<
若f(x)是R上的减函数,且f(x)的图象经过点A(0,4)和点B(3,-2),则当不等式|f(x+t)-1|<3的解集为(-1,2)时,t的值为()A.-1B.0C.1D.2-数学
已知函数f(x)=2x-1x.(1)讨论f(x)的单调性;(2)证明当x>1时,2x>3-1x.-数学
不等式x2+2x+a≥-y2-2y对任意实数x、y都成立,则实数a的取值范围是()A.a≥0B.a≥1C.a≥2D.a≥3-数学
已知f(x3)=lgx,则f(2)=______.-数学
设函数f(x)=2|2x+2|-|x-1|.(1)求函数f(x)的单调区间;(2)若不等式f(x)≥22a-2a-74恒成立,求a的取值范围.-数学
已知f(x)=ax2+bx+3a+b是偶函数,其定义域为[a-1,2a],则点(a,b)的轨迹为()A.点B.直线C.线段D.射线-数学
若f(x)=e-(x-u)2的最大值为m,且f(x)为偶函数,则m+u=______.-数学
下列函数中,在区间(1,+∞)上为增函数的是()A.y=21-xB.y=-(x+1)32C.y=lg(x-1)D.y=x+2x-数学
已知函数f(x)=ex-x(1)证明:对一切x∈R,都有f(x)≥1(2)证明:1+12+13+…+1n>ln(n+1)(n∈N*).-数学
已知函数y=f(x)是定义在R上的奇函数,且满足f(x+2)=f(x),又当x∈(0,1)时,f(x)=2x-1,则f(log126)的值等于______.-数学
设函数发f(x)=x,x≥0(12)x,x<0,则f(f(-4))=______.-数学
已知函数f(x)是定义在(-∞,+∞)上的奇函数,若对于任意的实数x≥0,都有f(x+2)=f(x),且当x∈[0,2)时,f(x)=log2(x+1),则f(-2011)+f(2012)的值为()A
返回顶部
题目简介
已知a>0,b>0,函数f(x)=x2+(ab-a-4b)x+ab是偶函数,则f(x)的图象与y轴交点纵坐标的最小值为()A.16B.8C.4D.22-数学
题目详情
答案
∴ab=a+4b,∵a>0,b>0,∴a+4b≥2
令
令函数f(x)=x2+(ab-a-4b)x+ab中x=0,得,f(0)=ab,∴f(x)的图象与y轴交点纵坐标为ab,
∵ab≥4
故答案为A