同时具有下列性质:“①对任意x∈R,f(x+π)=f(x)恒成立;②图象关于直线x=π3对称;③函数在[-π6,π3]上是增函数的函数可以是()A..f(x)=sin(x2+π6)B.f(x)=cos

题目简介

同时具有下列性质:“①对任意x∈R,f(x+π)=f(x)恒成立;②图象关于直线x=π3对称;③函数在[-π6,π3]上是增函数的函数可以是()A..f(x)=sin(x2+π6)B.f(x)=cos

题目详情

同时具有下列性质:“①对任意x∈R,f(x+π)=f(x)恒成立;②图象关于直线x=
π
3
对称;③函数在[-
π
6
π
3
]
上是增函数的函数可以是(  )
A..f(x)=sin(
x
2
+
π
6
)
B.f(x)=cos(2x-
π
3
)
C..f(x)=cos(2x+
π
3
)
D.f(x)=sin(2x-
π
6
)
题型:单选题难度:偏易来源:不详

答案

由选项可知函数的解析式设为y=sin(ωx+φ)或y=cos(ωx+φ);
①对任意x∈R,f(x+π)=f(x)恒成立;周期为π,ω=2;排除A;
②图象关于直线x=class="stub"π
3
对称;所以B不正确,D、C正确;
③函数在[-class="stub"π
6
,class="stub"π
3
]
上是增函数所以D正确;f(x)=cos(2x+class="stub"π
3
)是减函数,C不正确;
故选:D.

更多内容推荐