定义在D={x∈R|x≠0}上的函数f(x)满足两个条件:①对于任意x、y∈D,都有f(x)f(y)-f(xy)=x2+y2xy;②曲线y=f(x)存在与直线x+y+1=0平行的切线.(Ⅰ)求过点(-

题目简介

定义在D={x∈R|x≠0}上的函数f(x)满足两个条件:①对于任意x、y∈D,都有f(x)f(y)-f(xy)=x2+y2xy;②曲线y=f(x)存在与直线x+y+1=0平行的切线.(Ⅰ)求过点(-

题目详情

定义在D={x∈R|x≠0}上的函数f(x)满足两个条件:①对于任意x、y∈D,都有f(x)f(y)-f(xy)=
x2+y2
xy
;②曲线y=f(x)存在与直线x+y+1=0平行的切线.
(Ⅰ)求过点(-1,
1
4
)的曲线y=f(x)的切线的一般式方程;
(Ⅱ)当x∈(0,+∞),n∈N+时,求证:fn(x)-f(xn)≥2n-2.
题型:解答题难度:中档来源:不详

答案

(Ⅰ)令x=y=1得,f2(1)-f(1)=2,解得f(1)=-1或f(1)=2.
当f(1)=-1时,令y=1得,f(x)=-
x2+1
2x
,即f(x)=-class="stub"1
2
(x+class="stub"1
x
),
f′(x)=-class="stub"1
2
(1-class="stub"1
x2
),
由f′(x)=-1得,x2=-1,此方程在D上无解,这说明曲线y=f(x)不存在与直线x+y+1=0平行的切线,不合题意,
则f(1)=2,此时,令y=1得,f(x)=
x2+1
x
=x+class="stub"1
x
,f′(x)=1-class="stub"1
x2

由f′(x)=-1得,x2=class="stub"1
2
,此方程在D上有解,符合题意.
设过点(-1,class="stub"1
4
)的切线切曲线y=f(x)于(x0,x0+class="stub"1
x0
),则切线的斜率为1-class="stub"1
x02

其方程为y-x0-class="stub"1
x0
=(1-class="stub"1
x02
)(x-x0),把点(-1,class="stub"1
4
)的坐标代入整理得,
5x02-8x0-4=0,解得x0=-class="stub"2
5
或x0=2,
把x0=-class="stub"2
5
或x0=2分别代入上述方程得所求的切线方程是:y=-class="stub"21
4
x-5和y=class="stub"3
4
x+1,
即21x+4y+20=0和3x-4y+4=0.
(Ⅱ)由(Ⅰ)知f(x)=x+class="stub"1
x
,当n∈N*时,
fn(x)-f(xn)=(x+class="stub"1
x
)
n
-(xn+class="stub"1
xn

=
C1n
xn-1•class="stub"1
x
+
C2n
xn-2•class="stub"1
x2
+…+
Cn-2n
x2•class="stub"1
xn-2
+
Cn-1n
x•class="stub"1
xn-1

=
C1n
xn-2+
C2n
xn-4+…+
Cn-2n
class="stub"1
xn-4
+
Cn-1n
class="stub"1
xn-2

由x∈(0,+∞),n∈N*知,xn∈(0,+∞),那么
2(fn(x)-f(xn))=
C1n
xn-2+
C2n
xn-4+…+
Cn-2n
class="stub"1
xn-4
+
Cn-1n
class="stub"1
xn-2

+
Cn-1n
class="stub"1
xn-2
+
Cn-2n
class="stub"1
xn-4
+…+
C2n
xn-4+
C1n
xn-2
=
C1n
xn-2+
C2n
xn-4+…+
Cn-2n
class="stub"1
xn-4
+
Cn-1n
class="stub"1
xn-2

+
C1n
class="stub"1
xn-2
+
C2n
class="stub"1
xn-4
+…+
Cn-2n
xn-4+
Cn-1n
xn-2
=
C1n
(xn-2+class="stub"1
xn-2
)+
C2n
(xn-4+class="stub"1
xn-4
)+…+
Cn-1n
(xn-2+class="stub"1
xn-2

≥2
C1n
+2
C2n
+…+2
Cn-1n

=2(
C1n
+
C2n
+…+
Cn-1n

=2[(
C0n
+
C1n
+
C2n
+…+
Cn-1n
+
Cnn
)-
C0n
-
Cnn
)]
=2(2n-2)
所以fn(x)-f(xn)≥2n-2.

更多内容推荐