已知π2<α<π,0<β<π2,tanα=-34,cos(β-α)=513,求sinβ的值.-数学

题目简介

已知π2<α<π,0<β<π2,tanα=-34,cos(β-α)=513,求sinβ的值.-数学

题目详情

已知
π
2
<α<π,0<β<
π
2
,tanα=-
3
4
,cos(β-α)=
5
13
,求sinβ的值.
题型:解答题难度:中档来源:不详

答案

α∈(class="stub"π
2
,π)
tanα=-class="stub"3
4

sinα=class="stub"3
5
,cosα=-class="stub"4
5

α∈(class="stub"π
2
,π)
β∈(0,class="stub"π
2
)

-α∈(-π,-class="stub"π
2
)
,β-α∈(-π,0)
又∵cos(β-α)=class="stub"5
13
,∴sin(β-α)=
1-(class="stub"5
13
)
2
=-class="stub"12
13

sinβ=sin[(β-α)+α]=sin(β-α)cosα+cos(β-α)sinα=-class="stub"12
13
×(-class="stub"4
5
)+class="stub"5
13
×class="stub"3
5
=class="stub"63
65

更多内容推荐