有四个关于三角函数的命题:p1:存在x∈R,使得sin2x2+cos2x2=12;p2:若一个三角形两内角α、β满足sinα•cosβ<0,则此三角形为钝角三角形;p3:任意的x∈[0,π],都有si

题目简介

有四个关于三角函数的命题:p1:存在x∈R,使得sin2x2+cos2x2=12;p2:若一个三角形两内角α、β满足sinα•cosβ<0,则此三角形为钝角三角形;p3:任意的x∈[0,π],都有si

题目详情

有四个关于三角函数的命题:p1:存在x∈R,使得sin2
x
2
+cos2
x
2
=
1
2
;p2:若一个三角形两内角α、β满足sinα•cosβ<0,则此三角形为钝角三角形;p3:任意的x∈[0,π],都有sinx=
1-cos2x
2
;p4:要得到函数y=sin(
x
2
-
π
4
)
的图象,只需将函数y=sin
x
2
的图象向右平移
π
4
个单位.其中假命题的是(  )
A.p1,p3B.p2,p4C.p1,p4D.p2,p4
题型:单选题难度:偏易来源:不详

答案

P1:∀x∈R都有sin2 class="stub"x
2
+cos2 class="stub"x
2
=1,故P1错误;
p2:若一个三角形两内角α、β满足sinα•cosβ<0,所以cosβ<0,则此三角形为钝角三角形;正确.
P3:∀x∈[0,π],sinx>0,且1-cos2x=2sin2x,所以
class="stub"1-cos2x
2
=sinx正确;
p4:将函数y=sinclass="stub"x
2
的图象向右平移class="stub"π
4
个单位.要得到函数y=sin(class="stub"x
2
-class="stub"π
8
)
的图象,所以不正确.
故选C.

更多内容推荐